
The Effect of Program Optimization on Trace Cache Efficiency

Derek L. Howard and Mikko H. Lipasti
IBM Server Group

Rochester, MN 55901

derekh@us.ibm.com, mhl@ece.cmu.edu1

Abstract

Trace cache, an instruction fetch technique that reduces
taken branch penalties by storing and fetching program
instructions in dynamic execution order, dramatically
improves instruction fetch bandwidth. Similarly, program
transformations like loop unrolling, procedure inlining,
feedback-directed program restructuring, and profile-
directed feedback can improve instruction fetch bandwidth
by changing the static structure and ordering of a program’s
basic blocks. We examine the interaction of these compile-
time and run-time techniques in the context of a high-quality
production compiler that implements such transformations
and a cycle-accurate simulation model of a wide issue
superscalar processor. Not surprisingly, we find that the rel-
ative benefit of adding trace cache declines with increasing
optimization level, and vice versa. Furthermore, we find that
certain optimizations that improve performance on a pro-
cessor model without trace cache can actually degrade per-
formance on a processor with trace cache due to increased
branch history table interference. Finally, we show that the
performance obtained with a trace cache of a given size can
be obtained with a trace cache of about half the size by
applying aggressive compiler optimization techniques.

1. Introduction
Achieving a high degree of instruction-level parallelism

with general-purpose integer programs requires an aggres-
sive, high-bandwidth instruction fetch mechanism that
delivers a large number of useful instructions to the proces-
sor core in every cycle. Examining how to build such fetch
mechanisms has been and continues to be an important and
popular area of research (e.g. [1,2,3]). An effective instruc-
tion fetch mechanism must solve three problems in order to
deliver high instruction bandwidth: it must accurately pre-
dict multiple conditional branches in each cycle; it must
fetch multiple taken branch targets per cycle; and it must do
so within the confines of ever-shrinking cycle time budgets.
The latter requirement is obvious, while the first two follow
from the fact that general-purpose programs have frequent
conditional branches and frequent taken branches. One of
the most promising recently-proposed approaches for solv-
ing all three of these problems is the trace cache [2,4]. A
trace cache stores instruction sequences in dynamic execu-
tion order, rather than in static program order, effectively

folding out taken branches from the fetched instruction
stream. The trace cache fill unit collects dynamic sequences
of instructions (traces) as they execute, and then allocates
space for these traces in the cache. Subsequent fetches
access the trace cache with the same fetch address that is sent
to the instruction cache, and a directory tag match returns a
block of instructions that may contain multiple conditional
and/or taken branches. Multiple traces starting at a given
fetch address can be stored in the cache by adding a vector
of branch direction bits to the tag entry. One of these entries
can then be selected by performing multiple branch predic-
tions during the fetch and using those predictions to select
the matching trace entry. This approach is termedpath asso-
ciativity in the literature.

While trace cache has been shown to be an effective
dynamic technique for mitigating the effects of taken
branches, static techniques for accomplishing the same goal
have existed for years. Compiler techniques such as loop
unrolling (e.g. [5]), aggressive procedure inlining (e.g. [6]),
and feedback-directed program restructuring and optimiza-
tion (e.g. [7, 8, 9]) are widely available and known to pro-
vide significant performance benefits. Not only do these
optimizations increase the compiler’s scope or visibility into
larger portions of the program, hence opening up additional
opportunities and degrees of freedom for traditional code
transformations, but they are also very effective at reducing
the number of taken branches that a program executes.
Hence, one would expect these code transformations to have
a significant impact on the behavior and efficacy of dynamic
techniques like trace cache. Interestingly enough, we know
of no study that examines this problem in detail. It is the
intent of this paper to examine this question in the context of
a high quality, optimizing, production compiler that is in
widespread commercial use--the IBM xlC compiler for AIX
version 4--and a cycle-accurate simulation model that
implements trace cache.

2. Compiler Optimizations
The set of compiler optimizations studied in this paper

include loop unrolling, automatic procedure inlining, pro-
file-directed feedback, and feedback-directed program
restructuring. All of the optimizations are applied separately
as well as in combination to measure their effects as well as
their interactions. Furthermore, they are all applied in the
context of the conventional baseline optimizations provided
by the xlC compiler. These baseline optimizations include1. Now with the University of Wisconsin - Madison

eliminating local common subexpressions, constant folding,
code motion, constant propagation, register allocation, and
a host of other optimizations that one would expect to find
in an industrial-strength, production-quality workstation
compiler. We used runtime experiments on an RS/6000
model 143P workstation to guide our selection of loop
unrolling and procedure inlining; the runtime and code size
effects of our selections are summarized in Table 1.

Loop unrolling. Loop unrolling involves identifying
and replicating static loop bodies multiple times, and adjust-
ing the loop termination code and iteration counts to pre-
serve semantic correctness. For example, loop unrolling by
a factor of two statically writes the instructions for two loop
iterations, and reduces the number of iterations by two. The
baseline optimization will unroll loops up to degree four. We
used the compiler’s maximum allowable unrolling degree of
eight in order to emphasize the effect of loop unrolling in our
subsequent trace cache experiments.

Procedure Inlining. Automatic procedure inlining cop-
ies the instructions from a called procedure into the calling
procedure, inserting them at the call site. Doing so avoids the
call overhead and two taken branches, and exposes addi-
tional optimization opportunities to the compiler. The xlC
compiler allows arbitrarily large procedures to be inlined by
specifying a maximum size threshold. The baseline optimi-
zation will not automatically inline procedures at all. We
used a threshold value of 10 in subsequent microarchitec-
tural experiments to avoid excessive code bloat.

Profile-Directed Feedback Optimization.Profile-
directed feedback optimization (PDF) collects profile infor-
mation on the behavior of the program when run with a rep-
resentative input set. This profile information is used to
improve code near conditional branches and in frequently
executed code sections by filling branch delay slots. When
PDF is applied, the instruction scheduler exploits knowl-
edge of frequently-occurring paths through the code to fill
idle issue slots caused by branch delays with instructions
that are hoisted speculatively from the most likely path fol-
lowing a conditional branch. The PDF optimizations are
applied only within the scope of a single compilation unit.
To avoid clouding our experiments with inaccurate profile
information, we use the same input sets for profiling and
subsequent experiments.

Feedback-Directed Program Restructuring.FDPR is
a separate post-pass code object-code optimization tool that
is available under AIX version 4 [9]. FDPR collects profile
information on the behavior of the program as it runs and
uses it to restructure the program, reorganizing basic blocks
to minimize taken branches based on branch profiles and
moving unused or infrequently used blocks out of line to
prevent them from polluting the instruction cache. FDPR is
applied globally, to the whole linked executable as well as
statically-linked library code, hence deriving further benefit
beyond PDF, which is applied separately to each compila-
tion unit. The code transformations made by FDPR are not
influenced by the specific instruction cache organization of
the target machine; rather, the transformations attempt to
coalesce frequently-executed code--independent of proce-
dure, module, or basic block boundaries--into a contiguous
portion of the instruction address space. Such a transforma-
tion should benefit any instruction cache organization, since
it will move unused or infrequently used code out of line and
will also reduce instruction cache conflicts by placing tem-
porally related code segments in adjacent memory locations,
hence decreasing the probability of those segments from
conflicting in the cache. The fact that these transformations
result in fewer taken conditional branches is an incidental
benefit for processors that have a taken branch penalty.

Combining Optimizations. Finally, all four optimiza-
tions are applied in combination. The four optimizations
applied were loop unrolling up to factor of eight, inlining for
procedures up to size ten, and both the PDF and FDPR tech-
niques. The results are summarized in Table 1 ; code size
increases up to 24% in the worst case, while execution time
improves up to 21.5% in the best case.

3. Experimental Framework
Our experimental framework consists of three main

phases: optimized compilation with the various options
described in the preceding section; trace generation; and
microarchitectural timing simulation. All benchmarks are
compiled with the IBM xlC compiler for AIX version 4.
Traces are collected and generated with the TRIP6000
instruction tracing tool, which is an early version of a soft-
ware tool developed for the IBM RS/6000 that captures all
instruction and address references made by the CPU while

TABLE 1. Optimization Effects. Code size and speedup are relative to baseline optimization.

Benchmark

Inline10 Unroll8 PDF FDPR Combined

Code Size Speedup Code Size Speedup Code Size Speedup Code Size Speedup Code Size Speedup

go 107.62% 0.974 110.80% 1.009 101.12% 1.023 101.67% 1.039 124.15% 0.996

m88ksim 102.90% 1.045 101.88% 0.991 101.94% 1.000 100.07% 1.098 107.26% 1.075

gcc 112.41% 0.979 107.12% 0.970 103.86% 0.960 99.23% 1.224 111.65% 1.179

compress 100.75% 1.000 100.46% 1.026 99.89% 1.026 99.95% 1.049 100.24% 1.107

li 109.85% 1.170 101.51% 1.015 100.59% 1.024 99.22% 1.011 111.19% 1.215

ijpeg 105.55% 1.016 101.71% 1.025 100.94% 1.055 99.17% 1.102 112.33% 1.087

perl 103.24% 1.007 104.94% 1.014 103.01% 1.004 100.42% 1.127 112.81% 1.169

vortex 104.13% 1.044 1.0187% 0.959 105.14% 1.044 97.85% 1.091 108.05% 1.080

in user state. Supervisor state references between the initi-
ating system call and the corresponding return to user state
are lost; these are generally accepted as being relatively
unimportant for the SPECINT95 benchmarks. Finally, the
instruction trace is fed to a cycle-accurate microarchitec-
tural simulator that correctly accounts for the behavior of
each type of instruction. Our microarchitectural model is
implemented using the VMW framework [10].

We simulated two machine model configurations based
on the PowerPC 604e microarchitecture, but scaled from a
width of four instructions per cycle to 16 instructions per
cycle. Furthermore, to focus our experiments on instruction
fetch bandwidth and to eliminate secondary performance
effects caused by structural dependences and resource con-
flicts outside the fetch unit, we removed most such structural
restrictions. This approach is consistent with that taken by
Rotenberg et al. in the original trace cache paper [2]. Spe-
cifically, our model implements the following assumptions:
• Branch prediction: 64-way fully-associative branch tar-

get address cache (BTAC) and a 512-entry direct-
mapped bimodal branch history table (BHT).

• Trace selection: A 64K entry Gag-16 global branch
predictor that is capable of making up to three branch
predictions in each cycle.

• Trace cache: 512 entries, indexed by fetch address, and
4-waypath associative via branch bits. Partial match-
ing is not supported; partial squashing is [2].

• Support for a 512 instructions scheduling window.
• Perfect alias detection and store-to-load forwarding
• PowerPC 604e-like primary caches.
• A 3-cycle 256KB 8-way set-associative off-chip cache.
• A 10-cycle perfect level 3 cache

Our trace cache configuration is very similar to the one
described by Rotenberg et al. [2]. However, we increased
the number entries so the size of the trace cache array
matches the instruction cache (32KB of instructions), argu-
ably reaching approximately the same cycle time. Doing so
results in a trace cache configuration with 512 entries of up
to 16 instructions and 3 branches each, indexed by fetch
address and 4-way path-associative based on branch predic-
tion bits. We also use a Gag-16 global multiple branch pre-

dictor, identical to the one described in [2], to generate up to
three branch prediction bits per cycle. The trace cache fill
unit terminates a trace on any of four conditions: the fill
buffer contains 16 instructions; the fill buffer contains three
branches; the fill buffer contains a computed branch or sub-
routine return; or the fill buffer contains a system call or trap
instruction. The baseline fetch unit terminates fetch on a
cache line boundary, predicted taken branch, or a maximum
of 16 instructions fetched.

4. Results
We used the SPECINT95 benchmark set as shown in

Table 2 , which also summarizes the run length and the per-
centage of instructions that were taken branches for each of
the six compiler configurations. With few exceptions, inlin-
ing is the only optimization that significantly reduces path-
length, whereas unrolling is the only one that increases it.
The same trend holds for the frequency of taken branches; all
optimizations except unrolling slightly reduce the frequency
of taken branches.

Effective Fetch Bandwidth.Figure 1 shows the effec-
tive fetch bandwidth in terms of the number of useful and

TABLE 2. Benchmark Summary. Taken branches are shown as percent per instruction.

Benchmark

Baseline Inline10 Unroll8 PDF FDPR Combined

Run
Length

Taken
Br

Run
Length

Taken
Br

Run
Length

Taken
Br

Run
Length

Taken
Br

Run
Length

Taken
Br

Run
Length

Taken
Br

go 23482056 12.35% -0.50% 12.35% -.31% 12.82% -1.38% 11.46% 0.32% 9.01% -0.70% 9.06%

m88ksim 88847528 9.06% -2.77% 8.48% 3.95% 10.76% -0.30% 8.97% -0.81% 6.52% 0.56% 8.38%

gcc 22837047 10.61% -1.06% 10.42% 0.50% 10.76% -2.41% 9.76% 0.00% 10.25% -0.74% 8.17%

compress 36416415 11.39% -12.03% 8.03% -1.11% 11.38% -6.43% 10.51% 0.22% 10.25% -18.36% 7.34%

li 49837753 11.07% -13.04% 9.21% -2.91% 11.71% -0.73% 11.53% -0.16% 9.39% -16.84% 8.52%

ijpeg 59822952 12.07% -1.14% 12.02% 1.87% 13.82% -0.80% 11.32% -0.14% 8.14% -0.27% 10.65%

perl 47802761 9.50% -2.67% 9.36% 0.10% 9.54% -0.46% 9.37% -0.62% 8.50% -3.62% 8.41%

vortex 58707642 6.52% -0.11% 6.37% 10.86% 6.12% -0.27% 6.51% 7.33% 6.39% 7.64% 6.30%

Mean/Total 390.5M 9.96% -4.04% 9.22% 2.37% 10.61% -1.21% 9.67% 0.84% 8.01% -3.18% 8.36%

FIGURE 1. Effective Fetch Bandwidth. From left
to right, the bars show baseline, inlining, loop

unrolling, PDF, FDPR, and combined opt.

go m88ksim gcc compress li ijpeg perl vortex Mean
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0

In
st

ru
ct

io
ns

 F
et

ch
ed

 fr
om

 T
C

Useful Instructions Per Cycle
Incorrect Instructions Per Cycle
Useful Instruction Per Fetch
Incorrect Instructions Per Fetch

incorrect basic blocks and instructions fetched from the
trace cache.The results are shown both per successful trace
cache fetch and per execution cycle. On average, the trace
cache effective fetch bandwidth does not vary significantly
between the various levels of optimization. In general, the
number of incorrect instructions fetched increases slightly
with more aggressive optimization. Three of the bench-
marks (m88ksim, compress, andli) show significant varia-
tion in instruction fetch bandwidth per cycle as the
optimization level changes; form88ksimandli this can be
attributed to the corresponding variation in trace cache hit
rate. Forcompress, the variation is largely caused by inlin-
ing, which eliminates the truncation of trace cache entries
caused by subroutine returns.

Trace Cache Hit Rates.Figure 2 shows the both the
overall hit rates for the trace cache for each benchmark and
configuration, as well as the fraction of each trace cache
fetch that was partially wrong (i.e. a partial hit). The latter
fraction reflects the inaccuracy of the Gag-16 global branch
predictor used to select a trace from the trace cache. Inac-
curate predictions lead the fetch mechanism to choose a
trace with the wrong branch path out of the trace cache. The
low hit rates forgo andgcccan be attributed to their large
instruction footprint and unpredictable branch behavior.

Overall, loop unrolling slightly reduces the effective
fetch bandwidth and trace cache hit rate. This effect can be
attributed to the increased instruction footprint createdby
the unrolled code (see Table 1). Interestingly enough, the
same does not hold for inlining: even though the hit rate is
reduced by roughly 5%, the effective fetch bandwidth actu-
ally increases. Again, in the case of inlining, the elimination
of subroutine return instructions allows better utilization of
trace cache entries. This suggests that allowing subroutine
returns in the trace cache entries--with associated cost
increase in the tag array to hold the return addresses--might
be a beneficial hardware optimization. With one exception,
the other two optimizations do not significantly affect the
trace cache hit rate. In the case ofm88ksim, FDPR causes a
significant drop in the trace cache hit rate. This correlates

with a significant drop--roughly 1/3--in the rate of taken
branches (see Table 2), which in turn increases conflicts in
the Gag-16 branch predictor (see Section 5).

Speedup.Figure 3 summarizes performance results for
all of the configurations and benchmarks. First of all, the
data clearly show that trace cache provides a significant
boost in performance regardless of optimization level. How-
ever, the relative benefit of trace cache declines noticeably
with increasing optimization level. In some cases (m88ksim,
li) this decline is quite dramatic, and correlates with the
decline in trace cache hit rate (see Figure 2), which turn is
caused by increased instruction footprint and worse utiliza-
tion of the branch predictor’s pattern history table due to the
reduced number of taken branches. In the case ofli , this
decline in trace cache effectiveness is compensated by a sig-
nificant performance boost from the aggressive optimiza-
tions, resulting in overall speedup. However, in the case of
m88ksim, even though the combined optimization version
runs significantly faster without a trace cache, it actually
runs slower than the baseline optimized version with the
trace cache. We explore this performance anomaly in greater
detail in Section 5. The same holds true to a much lesser
extent forijpeg andperl.

Thecompressbenchmark shows the most dramatic vari-
ation in speedup. This can be attributed largely to the
increased fetch bandwidth (see Figure 1) and reduced path-
length (see Table 2) brought about by inlining. The other
optimizations have minor effects when applied individually,
but are more than additive when applied in concert.

Sensitivity to Trace Cache Size.Figure 4 summarizes
performance sensitivity to trace cache size for the baseline
and combined optimization cases. Performance shown is
relative to the performance of each benchmark with baseline
optimizations applied, running on a processor model with-
out a trace cache. Once again,m88ksimdemonstrates that
aggressive optimizations that increase performance without
a trace cache can actually reduce performance with large
trace cache. Interestingly enough, performance increases for
the small trace caches (32 and 64 entries) but starts to drop

FIGURE 2. Trace Cache Hit Rates. From left to
right, the bars show baseline, inlining, unrolling,

PDF, FDPR, and combined opt.

go m88ksim gcc compress li ijpeg perl vortex Mean
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TC
 H

it R
at

e

Complete TC Hit
Partial TC Hit

FIGURE 3. Performance Results. From left to
right, the bars show baseline, inlining, loop
unrolling, PDF, FDPR, and combined opt.

go m88ksim gcc compress li ijpeg perl vortex Mean
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20

S
pe

ed
up

Speedup Relative to BaseOpt/NoTC

Without Trace Cache
With Trace Cache

off for larger trace caches. This can be largely attributed to
the increase in partial hits shown in Figure 2 (the absolute
number of partial hits double between the baseline and com-
bined optimization cases). These in turn are caused by inac-
curate predictions from the Gag-16 predictor. The
aggressive optimizations, particularly FDPR, which reduces
the number of taken branches, are reducing the efficacy of
the global predictor by increasing aliasing between entries
(since fewer branches are taken, the branch history register
used to index into the pattern history table will contain more
zeroes and fewer ones, resulting in a worse distribution of
branches into the PHT). Bothijpeg, perl, andvortexshow
the same slight degradation with large trace caches.

On average, however, Figure 4 shows that aggressive
optimizations working in concert with trace caches--even
small trace caches--can provide significant performance
benefits. In fact, over the set of benchmarks shown, the per-
formance of a processor with a given size trace cache run-
ning baseline-optimized code is roughly matched by the
performance of a processor with half the number of trace
cache entries running aggressively-optimized code. Of
course, there is a diminishing return with larger and larger
trace caches, but the relative benefit of aggressive code opti-
mization is quite significant if area or timing constraints
allow only a small trace cache or no trace cache at all.

5. Performance Anomaly
One of the benchmarks in our study (m88ksim) demon-

strates behavior that is anomalous with respect to the other
benchmarks. This is evident from the fact that the baseline
and combined optimization plots shown in Figure 4 inter-
sect as the number of trace caches sets increases from 64 to
128. To study this further, we collected detailed information
for m88ksim at all optimization levels and trace cache sizes.
This data is plotted in Figure 5. The beneficial effect of the
FDPR optimization, both on its own and in concert with the
others in the combined optimization case, is evident for
small trace caches (64 or fewer entries). However, the rela-
tive benefit levels off for larger trace caches. The other opti-

mizations are at a clear disadvantage for smaller trace
caches, but end up overtaking the FDPR and combined opti-
mization cases at 128 or 256 trace cache entries. The best
overall performer ends up being the inline case with a very
large trace cache; this follows from the increased instruction
working set caused by inlining placing greater demands on
the trace cache. However, it is only marginally better than
baseline optimization for the 512 entry trace cache, and in
fact worse for the 128 and 256 entry trace caches.

The interesting question posed by Figure 5 is the lack-
luster performance of FDPR optimization with large trace
caches. Earlier we postulated that this was caused by
increased interference in the pattern history table used to
generate branch predictions for trace selection. To verify
this, we collected data on PHT interference and plotted it in
Figure 6. A PHT update is counted as interference if it meets
the following conditions: it must change the state of the
counter at the PHT entry, and it must be changed by a branch
at a different PC value than the last branch that changed the
state of that particular counter. Figure 6 shows the cumula-
tive distribution of interfering PHT updates for PHT entries
that are accessed with a fixed number of taken branches in
the branch history register (BHR) used to index into the
PHT. The smooth curve in the middle shows the expected
shape of a uniform distribution over all the PHT entries. The
first four optimization cases (baseline, inline, unroll, and
PDF) have a roughly uniform distribution of interference.
The last two (FDPR and combined) show a significant skew-
ing that results in a 30x increase in interference and three
orders of magnitude increase for PHT entries indexed with
few (less than 4) taken branches in the BHR. This is a direct
consequence of FDPR’s aggressive conversion of taken
conditional branches to not-taken conditional branches,
which results in a paucity of taken branches in the BHR. A
summary version of this data is plotted for all the bench-
marks in Figure 7; interestingly enough, we see that PHT
interference increases significantly (3x on average) for all
the benchmarks when FDPR is applied. In most cases, the
negative performance effect of this increase in interference

FIGURE 4. Sensitivity to TC Size. Sizes shown
are 0, 32, 64,128, 256, and 512 entries.

go m88ksim gcc compress li ijpeg perl vortex Mean
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

Sp
ee

du
p

Speedup Relative to BaseOpt/NoTC

Baseline Optimization
Combined Optimization

FIGURE 5. Sensitivity of m88ksim to TC Size.

0 (No TC) 32 64 128 256 512
Trace Cache Size (# Entries)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

S
pe

ed
up

Speedup Relative to BaseOpt/NoTC (m88ksim)

Baseline
Inline
Unroll
PDF
FDPR
Combined

is masked by other factors; it surfaced for us only in the case
of m88ksim. One obvious solution to the interference prob-
lem is to use an alternative indexing scheme known as
gshare [3]; this scheme employs the exclusive-or of the BHR
value and the branch PC to index the PHT, and has been
shown to improve branch prediction accuracy. Figure 7 also
plots the amount of PHT interference experienced with such
a scheme. Clearly, the gshare scheme eliminates most of the
interference problem and shows hardly any sensitivity to
optimization level. However, building gshare indexing--
which requires knowledge of the addresses of multiple
branch instructions in the trace cache entry before the entry
is fetched--into the trace cache fetch path is non-trivial and
beyond the scope of this paper. Approximations to gshare
indexing have been suggested elsewhere [4], and are prob-
ably an appropriate solution to the interference problem that
is caused by the proliferation of FDPR-like compiler opti-
mization.

6. Conclusions
In this paper we examine the interaction of aggressive

compiler optimization techniques--loop unrolling, auto-
matic procedure inlining, profile-directed feedback, and
feedback-directed program restructuring, applied individu-
ally and in concert--and the trace cache fetch mechanism.
We do so in the context of a high quality, optimizing, pro-
duction compiler that is in widespread commercial use and
a cycle-accurate simulation model based on the PowerPC
604e that implements trace cache. We find that the relative
benefit of adding trace cache declines with increasing opti-
mization level. We also find that FDPR optimizations, which
removes taken branches based on profile information and
improves performance on a processor model without trace
cache can actually degrade performance on a processor with
trace cache; this can be attributed to increased interference
in the pattern history table that is caused by a paucity of
taken branches in the branch history register used to index
the PHT. A possible solution to the interference problem is
to employ an alternative PHT indexing scheme like gshare.

Finally, we find that the performance obtained with a trace
cache of a given size can be obtained with a trace cache of
about half the size by applying aggressive compiler optimi-
zation techniques. Our results are in agreement with a con-
temporaneous study of the same issues using a different
architecture and slightly different parameters [11].

Notice. IBM, AIX, xlC, RS/6000, FDPR, and PowerPC
604e are registered trademarks of the IBM Corporation.
This publication may refer to products that are not currently
available in your country. IBM makes no commitment to
make available any products referred to herein.

References
[1] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel. Op-

timization of instruction fetch mechanisms for high issue
rates. InProceedings of ISCA-22, pages 333–344, Santa Mar-
gherita Ligure, Italy, June 1995.

[2] E. Rotenberg, S. Bennett, and J. Smith. Trace cache: a low la-
tency approach to high bandwidth instruction fetching. In
Proceedings of MICRO-29, December 1996.

[3] S. McFarling. Combining branch predictors. Technical Re-
port TN-36, Digital Equipment Corp, June 1993.

[4] D. Friendly, S. Patel, and Y. Patt. Alternative fetch and issue
policies for the trace cache fetch mechanism. InProceedings
of the MICRO-30, December 1997.

[5] S. Weiss and J. E. Smith. A study of compilation techniques
for pipelined supercomputers. InProceedings of ASPLOS-II,
pages 105–109, 1987.

[6] S. McFarling. Procedure merging with instruction caches. In
Proceedings of the ACM SIGPLAN PLDI-91, pages 71–79,
Toronto, June 1991.

[7] D. J. Hatfield and J. Gerald. Program restructuring for virtual
memory.IBM Systems Journal, 3:168–192, 1971.

[8] W.-M. W. Hwu and P. P. Chang. Achieving high instruction
cache performance with an optimizing compiler. InProceed-
ings of ISCA-16, pages 242–251, Jerusalem, May–June 1989.

[9] R. R. Heisch. Trace-directed program restructuring for AIX
executables.IBM Journal of Research and Development,
38(5):595–603, September 1994.

[10] T. A. Diep and J. P. Shen. VMW: A visualization-based mi-
croarchitecture workbench.IEEE Computer, 28(12):57–64,
1995.

[11] A. Ramirez, J.-L. Larriba-Pey, C. Navarro, J. Torrellas, and
M. Valero. Software trace cache. InProceedings of ACM ICS-
99, Rhodes, Greece, June 1999.

FIGURE 6. PHT Interference Distribution.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
BHR Taken Branches

1.0

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

P
H

T
 In

te
rf

er
en

ce

PHT Interference Distribution (m88ksim)

Baseline
Inline
Unroll
PDF
FDPR
Combined

FIGURE 7. Total PHT Interference.

go m88ksim gcc compress li ijpeg perl vortex Mean
0

2

4

6

8

10

12

14

%
 P

H
T

 U
p

d
a

te
s

PHT Update Interferference

Gshare-16
Gag-16

