
SPAID: Software Prefetching in Pointer- and Call-Intensive Environments

Mikko H. Lipasti, William J. Schmidt, Steven R. Kunkel, and Robert R. Roediger
IBM Corporation

3705 Highway 52 North
Rochester, MN 55901

Abstract
Software prefetching, typically in the context of numeric-

or loop-intensive benchmarks, has been proposed as one
remedy for the performance bottleneck imposed on computer
systems by the cost of servicing cache misses. This paper pro-
poses a new heuristic–SPAID–for utilizing prefetch instruc-
tions in pointer- and call-intensive environments. We use
trace-driven cache simulation of a number of pointer- and
call-intensive benchmarks to evaluate the benefits and imple-
mentation trade-offs of SPAID. Our results indicate that a
significant proportion of the cost of data cache misses can be
eliminated or reduced with SPAID without unduly increasing
memory traffic.

1. Introduction
It is well known that processor clock speeds are increasing

exponentially over time, while memory speeds are not
increasing nearly as rapidly [RD94]. The computing industry
has reached the point where system performance is domi-
nated by the cost of servicing cache misses. To address this
problem, several instruction set architectures (e.g. PowerPC
[IBM93]) include non-blocking prefetch instructions that
allow the hardware to overlap cache misses with other useful
work. It is incumbent upon the designers of optimizing com-
pilers to find ways to utilize prefetch instructions to reduce
both the cost and the frequency of cache misses.

This paper proposes a compile-time heuristic called
SPAID (speculativelyprefetchinganticipatedinterproce-
duraldereferences) for inserting prefetches into the instruc-
tion stream to reduce both the cost and the frequency of a
certain class of data cache misses. Specifically, the heuristic
considers pointers that are passed as arguments on procedure
calls, and inserts prefetches at the call sites for the data ref-
erenced by the pointers. The fundamental premise of this
heuristic is that pointer arguments passed on procedure calls
are highly likely to be dereferenced within the scope of the
called procedure.

2. Related work
Since the introduction of cache memories [Smi82, Prz90],

researchers have continually sought to improve their perfor-
mance. Some investigators have concentrated on improving
the caches themselves, by such techniques as placing caches
on the same chip as the processor [ACH+87], inventing non-
blocking caches that can tolerate multiple outstanding misses
[Kro81, SD88, SF91], or adding additional hardware fea-
tures to reduce the probability and latency of cache misses
[FP89, Jou90]. Others have considered modifying programs
themselves to better utilize existing cache hardware.

Efforts to improve instruction cache behavior of programs
have their roots in methods to improve paging behavior of
main memory [HG71, Fer74, Har88]. A popular area of
research has been repositioning of code sections by the com-
piler, both at the basic block level and the procedure level
[HC89, GC90, PH90, CMH91, Wu92]. Some such methods

operate on the executable after link time, allowing intermin-
gling of basic blocks from different procedures [Hei94b,
Hei94a], while others take into account the branch prediction
architecture of the hardware [CG94]. McFarling [McF91]
has investigated the use of cache parameters in selecting pro-
cedures to be inlined. Mendlson et al. have shown how to
avoid conflict misses of instructions in loops [MPS94].

Improvements to the data cache performance of programs
have primarily been limited to scientific code that operates on
loops. Many of these investigations focus on analysis of data
utilization to guide program transformations, particularly on
loops, to improve data locality [ASKL81, GJG88, CK89,
FST91, LRW91, WL91, KM93, CMT94]. With the advent of
prefetch instructions, other researchers have sought ways for
compilers to intelligently insert such instructions to improve
data cache performance. Most such techniques do not require
additional hardware support [Por89, CKP91, FP91, MG91,
MLG92, Mow93, BCF95], while others use a combined
hardware/software approach [KL91,CMCH91]. Chen and
Baer [CB94] have argued that a pure hardware prefetching
approach can outperform software prefetching techniques.

Most of the data prefetching techniques discussed above
apply principally to loop-intensive scientific applications (in
[CMCH91] Chen et al. propose hardware prefetch buffers to
support aggressive prefetching for non-numeric bench-
marks, while Abraham et al. study the predictability of load/
store latencies in non-numeric codes in [ASW+93]). How-
ever, improvement of cache performance is crucial to more
general applications running on standard hardware. Various
studies have shown [CB93, MDO94] that nonscientific
workloads such as operating system code can be heavily
dependent upon cache behavior, and that real workloads tend
to require better cache performance than industry bench-
marks indicate [GHPS93]. The intent of our research is to
provide a first step in addressing the problem of data cache
latency in general-purpose code that is both pointer- and call-
intensive.

3. Benchmarks
To evaluate the efficacy of theSPAID heuristic, we selected

a set of pointer- and call-intensive benchmarks written in C
and C++, several of which are well-known and have been
used in previous studies. The benchmarks and their input sets
are described in Table 1.

TABLE 1. Benchmark Set

Bench
mark Description (Language) Input Set

xlisp Lisp Interpreter (C) Six queens lisp program

gcc Phase cc1 of Gnu C Compiler (C) insn-recog.c

groff Text Formatter (C++) groff man page (40K)

idl OMG IDL parser (C++) somcls.idl definition file

gperf Hash Generator (C++) scrabdict.200 (200 words)

sched Instruction scheduler (C++) eightq C program object

spaid Cache Model (C/C++) short trace of gcc (17K)

The first two benchmarks,xlisp andgcc, are part of the
SPEC integer suite [spe89], and have been studied exten-
sively in the past. The next two,groff andidl, are C++ bench-
marks that have been also been included in previous studies.
The fifth benchmark,gperf, is Gnu’s perfect hash function
generator implemented in C++. The sixth benchmark,sched,
is a post-pass speculative instruction scheduler for the Pow-
erPC architecture written in C++ [DLS93]. The final bench-

mark,spaid, is the trace-driven cache model used to collect
the data presented in this paper. It is written primarily in C++,
although pieces of the low-level cache directory code are
written in C with C++ object wrappers.

The relevant characteristics of these benchmarks are
shown in Table 2. The four columns show run length in
instructions, a dynamic count of procedure calls, average
procedure length, and the number and fraction of those calls
that passed at least one pointer argument. The data indicate
that all seven benchmarks are both pointer- and call-inten-
sive, making them less amenable to previously reported
approaches to data cache optimizations and/or software
prefetching.

4. Experimentation framework
Our experimentation framework, summarized in Figure 1,

consists of three main phases: trace collection, cache simu-
lation, and cache work analysis. All benchmarks were run to
completion and were compiled with the IBM XL family of
compilers (xlC for C++ and xlc for C) at full optimization
under AIX version 3.2. However, inlining was explicitly dis-
abled to enable us to detect all call sites during program exe-
cution.

4.1.Trace collection
We used the TRIP6000 instruction tracing tool to collect

complete instruction and address traces of all the programs in
our benchmark set. TRIP6000 is an early version of a soft-
ware tool developed for the IBM RS/6000 that captures all

TABLE 2. Benchmark Characteristics

Bench
mark

Run
Length

Call
Sites

Proc.
Length

Touch Sites
(% calls)

xlisp 52.10M 1.36M 38.33 1.15M (85%)

gcc 146.14M 1.94M 75.23 1.36M (70%)

groff 118.90M 5.55M 21.42 4.25M (77%)

gperf 7.81M 222K 35.22 105K (47%)

idl 10.84M 356K 30.45 331K (93%)

sched 78.21M 4.38M 17.87 3.61M (83%)

spaid 99.43M 5.03M 19.78 5.01M (100%)

Total 513.43M 18.84M 27.26 15.82M (84%)

FIGURE 1. Experimentation Framework

Program Object

TRIP6000 Tracing Tool

Instruction Trace File

SPAID Cache Model

Cache Statistics

Cache Work Analysis

instruction and address references made by the CPU while in
user state. Supervisor state references between the initiating
system call and the corresponding return from system call are
lost.

The traces were post-processed to insert data cache
prefetches at call sites that pass one or more pointer argu-
ments. For one set of measurements, the post-processor was
restricted to placing a single prefetch at each call site. For a
second set, each call site was allowed up to two prefetches.

4.2.Cache simulation
The traces collected in the first step were then used to drive

a diverse set of data cache models. The results presented are
limited to cache sizes between 4K and 32K, primarily
because the working sets of the benchmarks used do not suf-
ficiently exercise caches larger than 32K. Other parameters
that were varied were line size (between 16 and 256 bytes)
and associativity (both direct-mapped and 4-way set-asso-
ciative) [Smi82, Prz90].

4.3.Cache work analysis
To quantify the performance gains due to theSPAID heu-

ristic, we compute a measure calledCW (cache work) that
approximates processor cycles spent executing each bench-
mark program.CW is defined as follows:

In the above equation, the first term is the product ofI (the
number of instructions executed) andCPI∞ (the perfect-
cache average instruction latency in cycles per instruction).
Since we do not model processor pipeline characteristics in
our experiments, we assume a conservativeCPI∞ value of
one, which will tend to understate thecache work improve-
ment provided bySPAID. The second term accounts for the
contribution of instruction cache misses and is the product of
Imiss (the number of instruction cache misses) andI latency (the
latency in cycles per miss). The third term accounts for the
contribution of data cache misses, excluding those preceded
by a prefetch, and is the product ofDmiss (the number of data
cache misses) andDlatency (the latency in cycles per miss).
The final summation term accounts for the cycles that the
processor must stall to complete data cache references that
were preceded by a prefetch of the same cache line; for each
distancei from zero toDlatency, the product ofMi (the number
of data cache references that were preceded by a prefetch
miss at a distance ofi cycles) and the remaining latency (Dla-
tency - i) is added to the totalcache work.

5. Results
We chose to report three different types of results from our

measurements: the effect ofSPAID on data cache misses, the
effect ofSPAID on cache work as computed above, and the
effect ofSPAID on memory traffic.

5.1.Cache misses
In Figure 2, we see the worst, average, and best case effects

of SPAID on our benchmark set, given data cache sizes of 4K
to 32K with 64-byte lines. The misses are presented accord-
ing to the Three-Cs model of cache performance [Hil87],
where the components of the stacked bar chart show com-
pulsory, capacity, and conflict misses (the compulsory
misses are not visible on the chart because they are insignif-
icant relative to the capacity and conflict misses). The break-
down was approximated by counting misses to a very large

CW I CPI∞× Imiss I latency× Dmiss Dlatency×

Mi Dlatency i–()×
i 0=

Dlatency

∑

+ + +=

(32MB) cache as compulsory misses, additional misses to a
4-way associative cache as capacity misses, and additional
misses to a direct-mapped cache as conflict misses.

Each cache size is shown with three sets of three bars, one
set for the worst case benchmark (gcc), one set for the aver-
age of all the benchmarks, and one set for the best case bench-
mark (idl). From left to right, each set has three bars; one for
the miss rates without theSPAID heuristic (P0), one with the
SPAID heuristic limited to one prefetch per call site (P1), and
one with theSPAID heuristic limited to two prefetches per
call site (P2).

On average, from 5-7% (depending on cache size) of miss
penalties are eliminated or reduced with just a single prefetch
per call site. For the best case benchmark (idl), 12-20% are
affected. In the worst case (gcc), only 1.5% of misses are
affected. We can attribute this worst-case behavior to a com-
bination of three factors that differentiategcc from the other
benchmarks. First of all,gcc has fewer call sites due to longer
procedures (its procedures are 75 instructions long on aver-
age, against an average of 27 for the benchmark set) and
hence provides fewer opportunities for inserting prefetches.
Second, it has a lower percentage of call sites that pass point-
ers as arguments (70% vs. an average of 84%), which again
reduces the number of opportunities for inserting prefetches.
Third, it has a relatively low prefetch miss rate of 9.9% (i.e.

FIGURE 2. Cache Misses vs. Cache Size

TABLE 3. Prefetch Results: 8K, direct-mapped, 64B line

Prefetch 1 Pointer Per
Call Site

Prefetch 2 Pointers Per
Call Site

Bench
mark

Pref.
Count

Miss
Rate

Use-
ful

Pref.
Count

Miss
Rate

Use-
ful

xlisp 1.15M 8.8% 75.3% 1.89M 7.4% 60.0%

gcc 1.36M 9.9% 61.1% 2.27M 5.5% 41.9%

groff 4.25M 10.4% 73.5% 7.00M 8.6% 41.0%

gperf 105K 31.1% 83.1% 162K 22.4% 77.7%

idl 331K 20.5% 52.8% 633K 13.3% 39.0%

sched 3.61M 4.3% 63.9% 4.60M 4.9% 51.6%

spaid 5.01M 7.0% 47.5% 7.73M 5.8% 46.7%

Σ/GM 15.82M 10.8% 64.2% 24.29M 8.4% 49.7%

W
or

st
/P

0
P

1
P

2
A

vg
/P

0
P

1
P

2
B

es
t/P

0
P

1
P

2
W

or
st

/P
0

P
1

P
2

A
vg

/P
0

P
1

P
2

B
es

t/P
0

P
1

P
2

W
or

st
/P

0
P

1
P

2
A

vg
/P

0
P

1
P

2
B

es
t/P

0
P

1
P

2
W

or
st

/P
0

P
1

P
2

A
vg

/P
0

P
1

P
2

B
es

t/P
0

P
1

P
2

0.0

1.0

2.0

3.0

4.0

5.0

M
is

se
s/

In
st

ru
ct

io
n

(%
)

Compulsory
Capacity
Conflict

4K/64B 8K/64B 16K/64B 32K/64B

the items that are prefetched tend to already be resident in
cache). In contrast,idl has an average procedure length of 30
instructions, 93% of call sites pass one or more pointers as
arguments, and its prefetch miss rate is 20.5%.

In general, we observe that inserting multiple prefetches
per call site does not provide significant additional perfor-
mance benefits beyond inserting just a single prefetch.
Table 3 summarizes the behavior ofSPAID for our bench-
mark set with a direct-mapped 8K data cache with 64 byte
lines, and illustrates two significant trends that occur as
SPAID attempts to insert multiple prefetches per call site.
First of all, while the absolute number of prefetches increases
(in some cases quite significantly), the prefetch miss rates
tend to decrease. Second, the percentage of those prefetch
misses that are useful (i.e. actually referenced later in the
trace) also decreases. These two factors combine to reduce
the relative efficacy of the heuristic and to increase both
cache conflicts and memory traffic, leading in most cases to
performance that is equivalent to or slightly degraded from
that of the single-prefetch version.

These trends indicate a need for further research in the area
of selecting which pointers to prefetch at call sites. Of the
benchmarks in our set, we had better success with those writ-
ten in C++ simply because we selected as the prefetch target
the first argument passed on each call. In the xlC implemen-
tation of C++, the first argument is always thethis pointer,
which, intuitively, has a very high probability of being deref-
erenced in the ensuing method call. Clearly, sinceSPAID is
speculative in nature, better heuristics are needed to control
and select prefetch targets in environments where the choice
is not as obvious as it is in C++, or where multiple prefetches
are both supported by hardware and potentially useful.

In Figure 3 we see the effects of line size on our benchmark
set. Again, we used an 8K cache, since this size illustrates the
prevailing trends effectively, and varied the line size from 16
bytes to 256 bytes. The three bars shown for each line size
indicate miss rates without theSPAID heuristic, with a single
prefetch per call site (P1) and with two prefetches per call site
(P2). For this set of benchmarks, a 64-byte line appears to be
the most effective, both in terms of absolute miss rates as well
asSPAID’s efficacy. However, we observe thatSPAID is
fairly robust in that it reduces misses to approximately the
same degree regardless of line size (4-7% for the line sizes
shown). Robust behavior with a variety of line sizes is desir-
able, since previous studies have shown that line sizes longer
than 64 bytes can be beneficial in certain important environ-
ments (e.g. transaction processing [MDO94]).

FIGURE 3. Effect of Line Size

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

Compulsory Capacity Conflict

16 P1 P2 32 P1 P2 64 P1 P2 128 P1 P2 256 P1 P2

One of our benchmarks (spaid) displayed anomalous
behavior with respect to the line size trends shown in
Figure 3. This behavior is best demonstrated in Figure 4,
where miss rates are shown forspaid in a 32K cache with line
sizes varying from 32 to 256 bytes. Both total misses and the
effectiveness of SPAID improve with larger cache lines, all
the way up to 256 bytes. This behavior is explained by the
large objects (cache directories) referenced in thespaid
cache model code. Both the implicit hardware prefetching
brought about by longer lines and the explicit software
prefetching of longer lines are more effective with this
benchmark, since larger pieces of the modeled cache direc-
tories are prefetched. In the 16K and smaller caches, how-
ever, the miss rate minimum occurs at 128-byte lines, due to
the excessive conflict misses caused by the larger 256-byte
lines.

5.2.Cache work
In Table 4 we show the computed cache work results for

each of the benchmarks, given an 8K, 2-way set associative
instruction cache with 64-byte lines; an 8K, 4-way set asso-
ciative data cache with 64-byte lines; and an average cache
miss latency of 18 processor cycles1. The WPI columns
report work per instruction, theIMP column reports
improvement relative to the baseline case, and theOPP col-
umn reports the percentage of total improvement opportunity
that SPAID successfully exploits (OPP is defined as the
improvement in theWPI divided by share ofWPI that is
caused by data cache misses, i.e. the share ofWPI thatSPAID

1. We assumed two setup and four transfer cycles on a 16-byte
memory bus running at one-third of the processor clock speed.

FIGURE 4. Effect of Line Size (spaid)

TABLE 4. Cache Work 8K/64B/ 4-way Data Cache

Prefetch 1 Pointer
Per Call Site

Prefetch 2 Pointers
Per Call Site

Bench
mark

Base
WPI WPI IMP OPP WPI IMP OPP

xlisp 1.29 1.27 98.5% 18.8% 1.27 98.3% 22.0%

gcc 1.72 1.71 99.9% 0.8% 1.71 99.9% 0.8%

groff 2.12 2.12 99.6% 3.6% 2.11 99.5% 4.8%

gperf 1.28 1.22 95.3% 27.0% 1.22 95.2% 27.2%

idl 1.48 1.43 97.2% 15.7% 1.43 96.8% 18.1%

sched 1.41 1.41 99.7% 5.5% 1.41 99.4% 10.3%

spaid 1.45 1.43 98.6% 9.1% 1.43 98.1% 12.2%

Mean 1.66 1.65 98.3% 7.3% 1.65 98.1% 9.1%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

Compulsory Capacity Conflict

32 P1 P2 64 P1 P2 128 P1 P2 256 P1 P2

potentially could exploit.). We report weighted arithmetic
means forWPI and geometric means forIMP andOPP.

TheOPP column in Table 4 indicates thatSPAID is quite
effective at reducing data cache stall cycles, eliminating 27%
of them in the best case (gperf), and 8-9% on average. While
the geometric mean of the improvement in total work is rel-
atively insignificant (less than two percent), we observe that
for two of the C++ benchmarks (gperf and idl), significant
improvements (3-5%) are achievable. Once again, we find
that inserting multiple prefetches per call site pays only mar-
ginal dividends.

Figure 5 displays howSPAID’s effect on cache work var-
ies with cache size. Once again, the miss latency is set at 18
processor cycles for a 64-byte cache line, while the size of the
4-way set-associative cache is varied from 4K to 32K.
Results are displayed only for the best-casegperf benchmark.
The performance improvement (IMP) provided bySPAID
deteriorates gracefully from 6% down to 3% for the 16K
cache, but then drops off to near 0% as cache size increases
to 32K. The opportunity (OPP) exploited bySPAID contin-
ues to increase up to 31% for the 16K cache, but then drops
off abruptly for the 32K cache, which is large enough to con-
tain the working set of the benchmark (the miss rate is only
0.1% per instruction).

In addition to the results shown, we computed cache work
data for a broad range of miss latencies for the various cache
configurations, but found that the interesting figures of merit
(IMP andOPP) were not very sensitive to memory latency.
This leads us to conclude that the prefetches which end up
being most useful tend to occur early enough relative to the
first use of the prefetched data that latency variations of up to
five times (6 to 36 processor cycles) do not change the results
noticeably.

5.3.Memory traffic
Figure 6 summarizes the increase in memory traffic for

each of the benchmarks measured. The weighted arithmetic
means for increases in memory traffic are 3.5% for a single
prefetch per call site (P1) and 6.6% for two prefetches per call
site (P2). For the single-prefetch case, even the worst-case
increase remains less than ten percent, which is significant
only on systems that are already memory bus bandwidth-lim-
ited. In addition,gperf, the benchmark which benefited most
from SPAID, experienced only a 1.2% and 2.4% growth for
the two cases.

Once again, this data reinforces the need for better heuris-
tics for selecting which pointers to prefetch at call sites. For

FIGURE 5. Cache Work vs. Size (gperf)

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

101.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%
4K-32K 4-Way Data Cache (gperf)

P1 IMP P2 IMP P1 OPP P2 OPP

4 8 16 32

all of the benchmarks exceptspaid, memory traffic increases
significantly as we attempt to insert multiple prefetches per
call site, with little or no improvement in performance. For
spaid, on the other hand, the additional prefetches don’t
cause additional memory traffic since they rarely miss the
cache (see Table 3). These observations, in addition to the
Useful column in Table 3, lead us to conclude that we are, in
many cases, prefetching the wrong pointer arguments.

Furthermore, two of the three benchmarks that experi-
enced significant growth in memory traffic (sched andspaid)
frequently reference C++ class objects that are larger than
typical cache lines (e.g. 64 bytes in Figure 2). In such cases,
given a priori knowledge of which members of a class are
likely to be referenced, it might be helpful to prefetch at some
non-zero offset from the pointer argument instead of or in
addition to prefetching at an offset of zero.

6. Conclusions and future work
We are encouraged by the early results presented in this

paper. Measurable performance gains are possible even with
the simple heuristic described here. However, it is clear that
significant research remains to be done to fully exploit the
idea of prefetching pointer arguments at procedure call sites.
We envision future work proceeding in three different areas.
First, we must identify and examine benchmarks that exer-
cise larger data caches. These might include multipro-
grammed workloads, operating system code, and/or
transaction processing workloads. Second, we must validate
the early results presented in this paper with more exact mod-
els and measurements. This could include implementing the
SPAID heuristic within an existing compiler for a system that
supports non-blocking prefetches and measuring the perfor-
mance of that system. Alternatively, we could extend our
trace-driven approach and replace our statisticalcache work
model with a true cycle-by-cycle simulation model. Third,
we must explore heuristics for selecting prefetch targets at
call sites that pass multiple pointer arguments. These heuris-
tics might be driven by run-time profile information and/or
interprocedural analysis.

Acknowledgments
We want to thank Arturo Martin-de-Nicolas for making the

TRIP6000 tracing tool available for our use. We also want to
thank Richard Eickemeyer for letting us reuse his cache
model code for our simulations. In addition, we acknowledge
the contributions of Bilha Mendelson and Mark Funk to the
idea of prefetching pointer arguments at call sites.

FIGURE 6. Memory Traffic

0.00%

5.00%

10.00%

15.00%

P1 P2

xlisp gperf gcc groff sched idl spaid

IBM, PowerPC, PowerPC 601, AIX, and RS/6000 are all
registered trademarks of the IBM Corporation.

References
[ACH+87] Anant Agarwal, Paul Chow, Mark Horowitz, John

Acken, Arturo Salz, and John Hennessy. On-chip in-
struction caches for high performance processors. In
Paul Losleben, editor,Proceedings of the 1987 Stan-
ford Conference on Advanced Research in VLSI, pages
1–24, Cambridge, MA, 1987. MIT Press.

[ASKL81] Walid Abu-Sufah, David J. Kuck, and Duncan H.
Lawrie. On the performance enhancement of paging
systems through program analysis and transforma-
tions. IEEE Transactions on Computers, C–
30(5):341–356, May 1981.

[ASW+93] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R.
Rau, and R. Gupta. Predictability of load/store instruc-
tion latencies. InProceedings of the 26th Annual ACM/
IEEE International Symposium on Microarchitecture,
December 1993.

[BCF95] David Bernstein, Doron Cohen, and Ari Freund. Com-
piler techniques for data prefetching on PowerPC.
Submitted, 1995.

[CB93] J. Bradley Chen and Brian N. Bershad. The impact of
operating system structure on memory system perfor-
mance. InProceedings of the Fourteenth ACM Sympo-
sium on Operating Systems Principles, pages 120–133,
Asheville, NC, December 1993.

[CB94] Tien-Fu Chen and Jean-Loup Baer. A performance
study of software and hardware data prefetching
schemes. In21st Annual International Symposium on
Computer Architecture, pages 223–232, 1994.

[CG94] Brad Calder and Dirk Grunwald. Reducing branch
costs via branch alignment. InSixth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, pages 242–251,
San Jose, October 1994.

[CK89] Steve Carr and Ken Kennedy. Blocking linear algebra
codes for memory hierarchies. InFourth SIAM Con-
ference on Parallel Processing for Scientific Comput-
ing, Chicago, December 1989.

[CKP91] David Callahan, Ken Kennedy, and Allan Porterfield.
Software prefetching. InFourth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 40–52, Santa
Clara, April 1991.

[CMCH91] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W.-M.
Hwu. Data access microarchitecture for superscalar
processors with compiler-assisted data prefetching. In
Proceedings of the 24th International Symposium on
Microarchitecture, 1991.

[CMH91] Pohua P. Chang, Scott A. Mahlke, and Wen-Mei W.
Hwu. Using profile information to assist classic code
optimizations. Software—Practice and Experience,
21(12):1301–1321, December 1991.

[CMT94] Steve Carr, Kathryn S. McKinley, and Chau-Wen
Tseng. Compiler optimizations for improving data lo-
cality. In Sixth International Conference on Architec-
tural Support for Programming Languages and
Operating Systems, pages 252–262, San Jose, October
1994.

[DLS93] Trung A. Diep, Mikko H. Lipasti, and John P. Shen.
Architecture-compatible code boosting for perfor-
mance enhancement of the IBM RS/6000. InProceed-
ings of the IEEE International Conference on
Computer Design, pages 86–93, 1993.

[Fer74] Domenico Ferrari. Improving locality by critical work-
ing sets.Communications of the ACM, 17(11):614–
620, November 1974.

[FP89] Matthew K. Farrens and Andrew R. Pleszkun. Improv-
ing performance of small on-chip instruction caches.
In 16th Annual International Symposium on Computer
Architecture, pages 234–241. IEEE Computer Society
Press, May 1989.

[FP91] John W. C. Fu and Janak H. Patel. Data prefetching in

multiprocessor vector cache memories. In18th Annual
International Symposium on Computer Architecture,
pages 54–63, 1991.

[FST91] Jeanne Ferrante, Vivek Sarkar, and W. Thrash. On es-
timating and enhancing cache effectiveness. In
U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,
editors,Fourth International Workshop on Languages
and Compilers for Parallel Computing, pages 328–
343, Santa Clara, August 1991. Springer-Verlag.

[GC90] Rajiv Gupta and Chi-Hung Chi. Improving instruction
cache behavior by reducing cache pollution. InPro-
ceedings of Supercomputing ’90, pages 82–91, New
York, November 1990.

[GHPS93] Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevma-
tikatos, and Alan Jay Smith. Cache performance of the
SPEC92 benchmark suite.IEEE Micro, pages 17–27,
August 1993.

[GJG88] Dennis Gannon, William Jalby, and Kyle Gallivan.
Strategies for cache and local memory management by
global program transformation.Journal of Parallel
and Distributed Computing, 5:587–616, 1988.

[Har88] Stephen J. Hartley. Compile-time program restructur-
ing in multiprogrammed virtual memory systems.
IEEE Transactions on Software Engineering,
14(11):1640–1644, November 1988.

[HC89] Wen-Mei W. Hwu and Pohua P. Chang. Achieving
high instruction cache performance with an optimizing
compiler. In16th Annual International Symposium on
Computer Architecture, pages 242–251, Jerusalem,
May–June 1989.

[Hei94a] Randall R. Heisch. FDPR for AIX executables.AIX-
pert, pages 16–20, August 1994.

[Hei94b] Randall R. Heisch. Trace-directed program restructur-
ing for AIX executables.IBM Journal of Research and
Development, 38(5):595–603, September 1994.

[HG71] D. J. Hatfield and J. Gerald. Program restructuring for
virtual memory. IBM Systems Journal, 3:168–192,
1971.

[Hil87] M. Hill. Aspects of cache memory and instruction buff-
er performance. PhD thesis, The University of Califor-
nia at Berkeley, 1987.

[IBM93] IBM Microelectronics Division, Essex Junction, VT.
PowerPC 601 RISC Microprocessor User’s Manual,
1993.

[Jou90] Norman P. Jouppi. Improving direct-mapped cache
performance by the addition of a small fully-associa-
tive cache and prefetch buffers. In17th Annual Inter-
national Symposium on Computer Architecture, pages
364–373, Seattle, May 1990.

[KL91] Alexander C. Klaiber and Henry M. Levy. An archi-
tecture for software-controlled data prefetching. In
18th Annual International Symposium on Computer
Architecture, pages 43–53, 1991.

[KM93] Ken Kennedy and Kathryn S. McKinley. Maximizing
loop parallelism and improving data locality via loop
fusion and distribution. InSixth International Work-
shop on Languages and Compilers for Parallel Com-
puting, pages 301–320. Springer-Verlag, August 1993.
Published as Lecture Notes in Computer Science, vol.
768.

[Kro81] David Kroft. Lockup-free instruction fetch/prefetch
cache organization. In8th Annual International Sym-
posium on Computer Architecture, pages 81–87. IEEE
Computer Society Press, 1981.

[LRW91] Monica S. Lam, Edward E. Rothberg, and Michael E.
Wolf. The cache performance and optimizations of
blocked algorithms. InFourth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 63–74, Santa
Clara, April 1991.

[McF91] Scott McFarling. Procedure merging with instruction
caches. InProceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation, pages 71–79, Toronto, June 1991.

[MDO94] Ann Marie Grizzaffi Maynard, Colette M. Donnelly,

and Bret R. Olszewski. Contrasting characteristics and
cache performance of technical and multi-user com-
mercial workloads. InSixth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 145–156, San Jose, Oc-
tober 1994.

[MG91] Todd Mowry and Anoop Gupta. Tolerating latency
through software-controlled prefetching in shared-
memory multiprocessors.Journal of Parallel and Dis-
tributed Computing, 12:87–106, 1991.

[MLG92] Todd C. Mowry, Monica S. Lam, and Anoop Gupta.
Design and evaluation of a compiler algorithm for
prefetching. InFifth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 62–73, 1992.

[Mow93] Todd C. Mowry. Tolerating Latency Through Soft-
ware-Controlled Data Prefetching. PhD thesis, Stan-
ford University, November 1993.

[MPS94] Abraham Mendlson, Shlomit S. Pinter, and Ruth Sh-
tokhamer. Compile time instruction cache optimiza-
tions. ACM Computer Architecture News, 22(1):44–
51, March 1994.

[PH90] Karl Pettis and Robert C. Hansen. Profile guided code
positioning. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 16–27, White Plains, June
1990.

[Por89] Allan Porterfield.Software Methods for Improvement
of Cache Performance on Supercomputer Applica-
tions. PhD thesis, Rice University, 1989. Technical
Report Rice COMP TR89–93.

[Prz90] Steven A. Przybylski.Cache and Memory Hierarchy
Design: A Performance-Directed Approach. Morgan
Kaufmann, San Mateo, CA, 1990.

[RD94] K. Roland and A. Dollas. Predicting and precluding
problems with memory latency.IEEE Micro,
14(4):59–67, 1994.

[SD88] C. Scheurich and M. Dubois. Concurrent miss resolu-
tion in multiprocessor caches. InProceedings of the In-
ternational Conference on Parallel Processing, pages
118–125, 1988.

[SF91] Gurindar S. Sohi and Manoj Franklin. High-bandwidth
data memory systems for superscalar processors. In
Fourth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 53–62, Santa Clara, CA, April 1991.

[Smi82] Alan Jay Smith. Cache memories.Computing Surveys,
14(3):473–530, 1982.

[spe89] Systems performance evaluation cooperative.SPEC
Newsletter, 1(1), 1989.

[WL91] Michael E. Wolf and Monica S. Lam. A data locality
optimizing algorithm. InProceedings of the ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 30–44, Toronto, June
1991.

[Wu92] Youfeng Wu. Ordering functions for improving mem-
ory reference locality in a shared memory multiproces-
sor system. InProceedings of the 25th International
Symposium on Microarchitecture, pages 218–221,
Portland, December 1992.

