
There are four main areas in which we see opportuni-
ties for future work. The first is in measuring the effect of
hardware extensions to our current machine model for
supporting unsafe code boosting. The second is imple-
menting a software mechanism similar to those proposed
by Bernstein et al. [10] for proving the safety of specula-
tive loads and measuring its impact on performance. The
third is augmenting our scheduler to allow weak ordering
of memory references by performing memory reference
disambiguation [4, 32, 13, 5]. The fourth is in integrating a
mechanism for register reallocation and spill code inser-
tion into our scheduling framework (for related work, see
[6]). Some of these efforts are currently underway.
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of the two types of functional units, FXU and MEM func-
tional units, for executing ALU instructions and load/store
instructions, respectively. Since so far we have experi-
mented with integer-intensive benchmarks, the number of
FPU’s is not considered. For machine model M2, the
instruction fetch bandwidth is six instructions per cycle,
instead of four instructions per cycle, and the instruction
dispatch bandwidth is increased to four instructions per
cycle, as opposed to two instructions per cycle. The per-
formance improvement over the original machine, M0, is
given in Table 5 for all of the benchmarks. Clearly, signifi-

cant performance improvements are obtained with M1 and
M2 over M0 due to the additional machine parallelism.
Additional performance increases of up to 1.86% and
7.16% are found for boosting across two conditional
branches on machine models M1 and M2, respectively.

While these performance improvements are not
impressive, it is clear that some benchmarks benefit signif-
icantly from AC boosting. Nonetheless, the concept of AC
boosting is shown to be feasible on realistic machines.
There is room for improvement on some of the scheduler
heuristics, and further experimentation on more bench-
marks is needed. Unlike the data presented in the original
boosting proposal [25], the above data does not include the
boosting of any load instructions. In the next subsection,
we explore this possibility.

4.4.AC Boosting of (Potentially Unsafe) Loads
Unsafe code motion allows load instructions to be

moved across conditional branches. Doing so exposes a
greater amount of program parallelism by increasing the
number of potential candidates for upward code motion.
Table 6 compares the performance improvement between
safe and unsafe code motion with respect to the perfor-
mance of the original machine, M0. The potential of hav-
ing more instructions for code motion increases the
possibility of the scheduler producing overly aggressive
code. For those benchmarks that show additional perfor-
mance improvement of unsafe code motion over safe
motion, up to 28.23% and 29.74% gains are observed for
boosting across two and five branches, respectively. These
results indicate that restricting speculative code motion to
only safe instructions can severely limit the amount of
instruction-level parallelism that can be exploited. The
results clearly indicate that speculative boosting of loads

TABLE 5. Performance Improvement due to AC Boosting

Benchmark

Performance Improvement with respect to M0

Scheduled for M1,
Executed on M1

Scheduled for M2,
Executed on M2

No
Boosting

Across 2
Branches

No
Boosting

Across 2
Branches

compress 47.37 % +0.94 % 67.84 % +4.07 %

eightq 24.19 % +0.00 % 41.51 % +0.00 %

grope 22.38 % +0.03 % 34.76 % +7.16 %

qslarge 23.04 % +0.07 % 29.13 % +0.07 %

queen 25.28 % +1.86 % 44.14 % +1.24 %

quick 17.47 % +0.00 % 19.08 % +0.00 %

tree 26.45 % +0.27 % 36.36 % +0.93 %

xlisp 19.48 % +0.00 % 37.99 % +0.00 %

AVERAGE 25.71 % +0.40 % 38.84 % +1.68 %

can result in significant performance gain for some bench-
marks.

5. Summary and Conclusion
Our results indicate that Architecture-Compatible

(AC) Boosting is a feasible and effective technique to
improve the performance of superscalar processors. AC
boosting has been implemented on the RS/6000 without
requiring any additional hardware support nor modifying
the instruction set architecture. Although no significant
performance improvement is found on the current imple-
mentation of the RS/6000, performance increase of up to
7.16% is attained by performing AC boosting across two
conditional branches on an extended, but realistic, imple-
mentation of the RS/6000.

By permitting unsafe code motion, AC boosting across
two conditional branches can achieve up to 28.23% per-
formance increase. This result shows that confinement to
only safe code motion limits the amount of instruction-
level parallelism that can be exploited. Unsafe code
motion however requires hardware support to handle pos-
sible exceptions at an incorrect point of the control flow.
Further experimentation is needed to determine the viabil-
ity of an architecture-compatible, software-based
approach to this problem. This is similar to the approach
proposed by Bernstein et al. in [10], in which they indicate
that a significant number of loads can be proven to be non-
excepting at compile time and, therefore, can be safely
boosted without hardware support. A combination of hard-
ware and software techniques may prove to be the most
effective approach, however, as indicated by previous
results [24, 25, 22]

As processor designs become more superscalar and
superpipelined, the under-utilization of the processor func-
tional units is likely to increase. As resource contention is
reduced with more machine parallelism, the sources for
stalls shift from structural dependences to data depen-
dences and control dependences. With an implementation
that has more machine parallelism, more instructions must
be found to cover the penalty due to control dependences.
We believe that AC boosting will be more effective in
these implementations because more opportunities to
boost instructions and to improve performance are avail-
able.

TABLE 6. Performance Improvement due to AC Boosting
of Load Instructions

Benchmark

Performance Improvement with respect to M0

Scheduled for M2, Executed on M2

Across 2 Branches Across 5 Branches

Safe Gain Safe Gain
compress 71.92 % +4.49 % 71.92 % +4.49 %

eightq 41.51 % +28.23 % 41.51 % +29.74 %

grope 41.93 % +2.00 % 41.93 % +2.00 %

qslarge 29.20 % +0.14 % 29.20 % +0.14 %

queen 45.38 % +7.25 % 45.38 % +11.60 %

quick 19.08 % +1.51 % 19.08 % +1.51 %

tree 37.29 % +1.24 % 37.29 % +1.24 %

xlisp 37.99 % +5.01 % 37.99 % +5.18 %

AVERAGE 40.54 % +6.23 % 40.54 % +6.99 %



have a greater number of taken conditional branches while
others have more not-taken conditional branches.

4.2.Performance of Current RS/6000 Machine Model
The baseline machine, M0, models the current imple-

mentation of the RS/6000. The instruction fetch band-
width is four instructions per cycle. The dispatch policy
allows condition code and branch instructions that do not
have data dependences to be executed in the dispatch stage
within the ICU. The ICU transfers all other instructions, at
most two per cycle, to the buffer servicing the FXU and
the FPU. The buffer stores at most four instructions. When
a buffer is full, a stall occurs and lasts until the buffer has
room to accept more instructions. When they are free, the
two functional units, FXU and FPU, retrieves instructions
from the buffer that do not have data dependences nor
structural dependences and execute them.

Table 2 shows the performance of the machine model
M0 running the unmodified benchmark set. The instruc-

tion traces span from twenty-thousand to over seven mil-
lion instructions, depending on the benchmark. The
instruction count for the entire benchmark set is over
twenty million instructions. The performance, in terms of
the average number of instructions issued per cycle (IPC),
varies from 0.76 to 1.18, with a mean of 1.02. Table 3
exhibits the distribution of control, data, and structural
hazards of the benchmark set. Six of the seven bench-
marks have structural hazards as the most dominant of the
three types of hazards. This result indicates that perfor-
mance is limited most severely by resource contention,
namely, the FXU functional unit. Table 4 presents the dis-
tribution of branch instructions with respect to their branch
latencies. The latency of a branch is defined as the number
of extra cycles needed to resolve the branch condition
once a branch is decoded in the ICU. A zero-latency
branch resolves the direction that the branch takes in the

TABLE 1. Benchmark Set Description

Benchmark Description
compress data compression (SPEC benchmark)

eightq eight queen (recursive version)

grope version of grep

qslarge quicksort (iterative version)

queen eight queen (Stanford benchmark)

quick quicksort (Stanford benchmark)

tree treesort (Stanford benchmark)

xlisp xlisp (SPEC benchmark)

TABLE 2. Performance on Current RS/6000 Model

Benchmark

Instruction
Count

(unmodified)
Cycle Count
(unmodified)

Average
IPC

compress 7,121,836 7,070,747 1.01

eightq 20,862 21,820 0.96

grope 6,525,825 5,544,277 1.18

qslarge 1,000,252 1,159,338 0.86

queen 972,537 972,287 1.00

quick 792,205 1,035,690 0.76

tree 1,272,596 1,533,912 0.83

xlisp 3,168,297 3,098,972 1.02

TOTAL 20,874,410 20,437,043 1.02

same cycle that the branch is decoded in the ICU. The
number of cycles to resolve a branch on the RS/6000 is
typically three. A branch latency greater than three repre-
sents a branch that depends on a condition code setting
instruction, which in turn also depends on another instruc-
tion. To reduce the effects of control dependences is equiv-
alent to minimizing the total number of cycles of all
branch latencies. One way of achieving that is to reduce
the branch latency to zero cycle for as many branches as
possible. In the benchmark set,quick has the lowest per-
centage of zero-latency instructions, whilegrope has the
highest. In other words,grope has the least potential for
performance improvement.

4.3.AC Boosting on Current & Extended Machine Models
To perform AC boosting effectively requires the

scheduler to make good decisions on which instructions to
boost. Boosting an instruction without having a functional
unit to execute it can degrade performance by interfering
and possibly lengthening the critical path of the original
code. In order to avoid this undesirable effect, the sched-
uler maintains a record of the functional unit utilization as
it schedules instructions within each fragment.

Three machine models are used in our experiments.
First, AC boosting is performed for the machine model,
M0, with boosting distance of crossing up to two condi-
tional branches. For most cases, little or no performance
increase is found; in the other cases, slight performance
degradation is observed. The reason is that the machine
model M0 does not have enough functional units to deal
with the resource requirements. Hence, two machine mod-
els with additional functional units are introduced, as
shown in Figure 7. The machine model M1 has one addi-
tional FXU, while the machine model M2 has two of each

TABLE 3. Distribution of Control, Data, Structural Hazards

Benchmark

Total
Number of
Hazards

Ratio of
Control
Hazards

to All
Hazards

Ratio of
Data

Hazards
to All

Hazards

Ratio of
Structural
Hazards

to All
Hazards

compress 7,793,818 19.88 % 13.55 % 66.57 %

eightq 23,151 28.84 % 16.24 % 54.92 %

grope 6,703,479 48.74 % 33.90 % 17.36 %

qslarge 1,286,087 44.51 % 8.73 % 46.76 %

queen 1,049,542 29.63 % 9.21 % 61.16 %

quick 1,111,920 36.19 % 22.84 % 40.98 %

tree 1,743,038 34.11 % 23.89 % 42.00 %

xlisp 4,161,551 16.37 % 42.49 % 41.47 %

AVERAGE 2,984,073 32.28 % 20.36 % 46.40 %

TABLE 4. Distribution of Latencies in Resolving Branches

Benchmark

Branch Latencies (in cycles)

0 1 2 3 4 - 6
compress 44.05 % 28.31 % 9.80 % ~0.00 % 17.90 %

eightq 46.31 % 0.00 % 22.10 % 29.60 % 1.97 %

grope 81.50 % 0.03 % 4.57 % 0.27 % 13.63 %

qslarge 44.59 % 14.26 % ~0.00 % 0.32 % 40.82 %

queen 44.22 % 19.02 % 7.81 % 19.37 % 9.59 %

quick 43.26 % 4.24 % 7.35 % 2.45 % 42.70 %

tree 56.50 % 1.52 % 6.06 % 1.51 % 34.40 %

xlisp 51.26 % 6.82 % 8.36 % 14.28 % 19.28 %

AVERAGE 51.46 % 9.28 % 8.26 % 8.48 % 22.54 %



instructions in the guest ready set. Once an instruction has
been scheduled for each available functional unit (or, in
the absence of available instructions, the functional unit
has stalled), the scheduler increments its cycle count and
proceeds to reconstruct the ready sets for scheduling the
next cycle.

The final schedule in Figure 5 illustrates how the
scheduler boosted two instructions from the A1 guest
basic block to cover the latency between thecmpi andbc
instructions; the second of these also had its destination
renamed tor6 in order to prevent it from overwritingr4,
which must be preserved in case the branch falls through.

3.3.Retargetable Trace-driven Pipeline Simulator
The simulator takes as input an instruction trace, mod-

els the execution of the instructions, and produces as out-
put the performance data. All resources that are of interest
within the processor are represented at the register transfer
level. As an instruction flows through the pipeline in the
absence of structural, data, and control hazards, the simu-
lator records the resource utilization trace: the resources
that an instruction uses in each cycle during its execution.
Performance data is obtained by accumulating the
resource utilization trace over the entire instruction trace.

3.3.1. Retargetability
The simulator consists of two components: a knowl-

edge base and an engine. The description of the structure/
organization of a processor is stored in the knowledge
base, while the behavior of the processor is coded into the
engine. For example, the size of the instruction dispatch
buffer is stored in the knowledge base, and the dispatch
policy is coded in the engine as a C function that describes
the criteria that must be satisfied for an instruction to be
removed from the dispatch buffer and considered to have
been issued. The simulator is capable of modeling differ-
ent implementations of the RS/6000 architecture. In par-
ticular, the instruction fetch bandwidth, the instruction
dispatch bandwidth, the number and type of functional
units, and the number of read and write ports are all easily
reconfigurable by simply changing the parameters in the
knowledge base.

3.3.2. Simplifying Assumptions Used
The simulator does not model any memory hierarchy

effects. It assumes that all loads and stores take one cycle
to access memory, as in the case of a cache hit. Some
instructions, such as string instructions, have operands that
depend on the data in the registers, and their result latency
varies with respect to the operand values. The simulator
assumes the result latency for such instructions as fixed,
regardless of the value of the operands.

3.4.RS/6000 Machine Models
The machine model used by the scheduler abstracts the

structure of the implementation of the IBM RS/6000 archi-
tecture presented in [21] and [14]. This implementation
incorporates an instruction cache unit (ICU), which han-
dles instruction fetching and dispatching, as well as the
execution of branch and condition code instructions, a
fixed point unit (FXU), which executes fixed point and all
load/store instructions; a floating point unit (FPU), which

executes floating point instructions; and disjoint condition
code (CC), general purpose (GP), and floating point (FP)
register files. The scheduler’s machine model can be con-
figured to extend the existing implementation by including
one or more FXUs, FPUs, and zero or more load/store
units (MEMs), which are dedicated to executing load/store
instructions. Figure 7 summarizes the machine models
used in this paper. The machine model M0 represents the
current implementation of the RS/6000.

4. Experimental Results
4.1.Benchmark Set

The benchmark set used to evaluate the feasibility and
the effectiveness of AC boosting consists of eight bench-
marks, as shown in Table 1. All of the benchmarks are
integer-intensive, written in C, compiled with optimiza-
tions turned on, and run to completion. The focus is on
benchmarks that are branch-intensive but not loop-inten-
sive; no floating-point benchmarks were used. The
dynamic branch behavior characteristics of the benchmark
set is diverse. The percentage of branch instructions
encountered with respect to all instructions executed is
between 15.45% and 35.28%. The average run length, or
the number of instructions executed before finding a
branch, is between 3 and 7 instructions. Some benchmarks

FIGURE 7. Configurable Machine Models
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forms control and dataflow analysis on it. This informa-
tion, along with branch and execution statistics generated
by a profiled version of the image, are fed to the scheduler.
The disassembly, control flow analysis, and profiling are
all performed by an enhanced version of thegoblin profil-
ing system [28].

The scheduler is designed to take advantage of profil-
ing information, not only for predicting the outcomes of
conditional branches and boosting from likely successor
basic blocks, but also for favoring those portions of the
code executed most often by scheduling them first. This
approach gives the best possible execution schedule for
those portions that contribute the most to the dynamic
cycle count of the program. We expect the importance of
profile-guided scheduling to increase as we augment our
scheduler to support live-range splitting [7] and spill-code
insertion, since the scheduler will be able to include exe-
cution-frequency statistics into its spill code cost/priority
functions [7].

3.2.1. Scheduling Framework
For reasons of computational efficiency, the scheduling

framework divides the program image into fragments. A
fragment is defined as a sequence of basic blocks that has
one or more external entry points (i.e. subroutine call des-
tinations) followed by one or more exit points (subroutine
return statements). Each fragment is processed in turn
through the following sequence of steps:

1. Compute the control flow and control dependence
information for the fragment.

2. Compute register dataflow and def-use chains for
the fragment.

3. Order the basic blocks in the fragment by their exe-
cution frequency.

4. Select the basic block with the highest execution
frequency and add it to the scheduling scope as the
host basic block.

5. Find the most likely successor basic block, and add
it to the scheduling scope as a guest.

6. Apply Step 5 recursively, until the number of condi-
tional branches crossed matches that specified by
the user.

7. Construct a dependence graph for the scheduling
scope.

8. Schedule instructions in the scope, subject to the
dependence graph, until all instructions in the host
basic block have been scheduled. Allow upward
motion of instructions from successor basic blocks
to the host by performing the actions specified for
preserving semantic correctness.

9. Repeat from Step 4 until all basic blocks in the frag-
ment have been scheduled.

The number of guest basic blocks is indirectly deter-
mined by the number of conditional branches that the user
specifies should be crossed.

3.2.2. List Scheduling Algorithm
The list scheduling algorithm employed by our sched-

uler is fairly straightforward. As the host and guest basic
blocks are added to the scheduling scope, the instructions
in them are scanned for dependences, which are then

added to the dependence graph. Our dependence graph
contains three types of edges; RAW edges, which repre-
sent read-after-write, or true dependences between opera-
tions; WAW edges, which represent write-after-write, or
output dependences; and MISC edges, which are intro-
duced in the graph to impose miscellaneous ordering con-
straints. These are used to constrain the scheduler to keep
all memory accesses strongly ordered, to prevent upward
code motion of exception-causing instructions, and to pre-
vent downward code motion. Figure 6 shows an example
dependence graph, one that corresponds to the scheduling
example in Figure 5. Note that the RAW edges are

weighted with the result latencies of the instructions in
question. The weights on these edges are used to compute
weights for each node in the graph, based on the longest
path from the instruction to any other instruction in the
same basic block.

The scheduler computes two ready sets, one for the
host and one for the guests. The ready set is the set of
instructions whose reverse RAW and MISC dependences
have all been satisfied. Each ready set is then ordered by
the following cost function: whereweight is the original

weight assigned earlier,kill  is the set of last uses,gen is
the set of register values generated,ren is the set of desti-
nation registers that must be renamed,CP is the user-spec-
ified cost of introducing a copy instruction, andcopy is the
set of copy instructions that must be generated. Thekill
andgen terms are a heuristic for decreasing register pres-
sure, while theren andcopy terms are used to discourage
excessive resource consumption.

Once the ready sets are available, the scheduler
attempts to find instructions from the host ready set for
each idle functional unit; if it fails to do so, it looks for

FIGURE 5. Example of Code Scheduling
Original Code Scheduled Code

load r4= ...
load r5= ...
cmpi c0,r4,10
add r4=r4+r5
bc c0, A1
st ... =r4

A1: sub r3=r7-r4
and r4=r3&r5
st ... =r4

load r4= ...
load r5= ...
cmpi c0,r4,10
add r4=r4+r5
sub r3=r7-r4
and r6=r3&r5
bc c0, A1
st ... =r4

A1: st ... =r6

FIGURE 6. Sample Dependence Graph
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Figure 2. If the definition of r1 in basic block (ii) is

boosted into basic block (i), it must be renamed to prevent
it from overwriting the previous value of r1, which must
be preserved in case the left branch is taken. However,
since multiple definitions of r1 reach the use in basic block
(iii), that use cannot be renamed. Instead, a register copy is
added to basic block (ii). This way, whichever branch
direction is taken, the correct value residing in r1 is
ensured when it is used in basic block (iii). The register
copy that is explicitly added to basic block (ii) corresponds
to the shadow structure copy that is implicitly encoded
within each conditional branch instruction in the original
boosting technique [25]. An additional instruction is intro-
duced for each register copy that is specified explicitly in
software. This cost corresponds to the additional hardware
support needed to make that copy implicitly from the
shadow register file.

In future implementations of the architecture, some
form of hardware support can be beneficial for executing
the additional register copy instructions. One means of
support would be to add instruction opcodes that encode
multiple register copy operations. Another would be to
have specialized and dedicated functional units to execute
these instructions. The primary resource required by these
functional units would be additional register file ports.

2.3. Instruction Replication
To support the general case of upward speculative code

motion, the case in which instructions are moved across
either an entry point or a control flow join must be consid-
ered. A mechanism is needed to ensure that the boosted
instructions are executed irrespective of which control
flow path is taken to reach the guest basic block in which
they originally reside. A simple solution is to replicate the
boosted instruction at the end of each basic block that pre-
cedes the guest in the control flow graph. In cases where
the guest is not an immediate successor of the host, how-
ever, the solution is not quite so simple. For example, in
the control flow graph shown in Figure 3, an instruction

FIGURE 2. Example of Register Copy Creation

FIGURE 3. Example of Instruction Replication
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boosted from basic block (iv) to basic block (i) must be
replicated in basic block (v), but not in (ii) or (iii).

A replicate set for each guest basic block in the scope
is found by searching all paths from the guest to the host
and marking each node that is on a path. The predecessor
set of each marked basic block is checked for unmarked
basic blocks; these are added to the replicate set of the
guest. As instructions are boosted into the host, they are
appended to each basic block in the replicate set.

3. Experimentation Framework
Figure 4 gives the overview of the experimentation

framework. The program image under consideration is
processed by thegoblin profiler [28], which inserts calls to
profiling routines at basic block boundaries, to produce a
profiled image. Running that image with a data set pro-
duces a basic block trace. This basic block trace is ana-
lyzed for all conditional branches in the program to
generate branch statistics, which are then fed to the sched-
uler, along with the original program image. The scheduler
produces a new image, rescheduled for the machine con-
figuration specified. A retargetable trace-driven pipeline
simulator is used to determine the performance of the orig-
inal and the new images.

3.1.Profiler
goblin is an instruction-level profiling tool for the IBM

RS/6000 machines [28]. The goal of goblin is to provide a
precise instruction-level view of a program execution on
the RS/6000; this goal is accomplished via invasive profil-
ing. Invasive profiling inserts instrumentation code into
the user program which does not perturb the program
state, but is sufficient for maintaining an exact record of
the program’s execution. Thegoblin system can be used to
generate a wide variety of execution and resource-utiliza-
tion statistics. Our use of it is limited to collecting a basic
block trace that captures control flow information for use
by the scheduler.

3.2.Scheduler
The instruction scheduler for performing AC boosting

takes as input a binary executable image, generated by the
IBM XL compiler back end [31], disassembles it, and per-

FIGURE 4. Overview of Experimentation Framework
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question. At this point, the results in the shadow structures
are either committed or discarded, depending on the out-
come of the branch.

Smith et al. [24] identify two characteristics of specu-
lative code motion—safety and legality—that describe
how program semantics can potentially be changed by
unwanted side effects. The cross-product of the two pro-
duces four different types of code motion: safe and legal,
safe but illegal, legal but unsafe, and unsafe and illegal, as
illustrated in Figure 1. Thesafety characteristic of code

motion describes its potential to cause an exception at an
incorrect point in the program flow, whereas thelegality of
code motion refers to its destruction of program state that
may be needed later. A combination of compiler and hard-
ware techniques are proposed by Smith et al. to address
these two potential violations of program semantics. To
maintain correctness in the case of unsafe code motion,
boosted instructions are labeled as non-excepting, and
exception handling is delayed until the control flow has
been resolved. Similarly, to maintain correctness for ille-
gal code motion, instructions that are labeled as boosted
temporarily have their results stored in shadow structures,
again until their control dependences have been resolved.

1.3.Weakness of the Original Boosting Idea
While we agree that some hardware support is neces-

sary for maintaining correctness in the case of unsafe code
motion, we claim that the elaborate hardware scheme
using shadow register files for handling illegal code
motion is unnecessary. Rather than extending the hard-
ware to contain multiple copies of the entire register file
(one for each conditional branch that an instruction is
allowed to move across) to prevent destructive side
effects, or limiting performance by employing the less
aggressive alternatives presented in [24], we claim that
non-destructive storage allocation can be performed effec-
tively by the compiler. Modifying the register allocation
for instructions that have no implicit side effects is suffi-
cient for guaranteeing semantic correctness for illegal
code motion. Without any hardware support, we must for-
feit unsafe code motion as well as code motion of instruc-
tions with destructive implicit side effects. While the
performance results of our approach are not expected to be
as impressive as those presented by Smith et al., our
approach is applied to a real machine and uses existing
hardware. Also, our scheduler is compatible with the exist-

FIGURE 1. Types of Speculative Code Motion

r1 = ... r1 = r2 & r3

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3
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(c) unsafe (d) unsafe and illegal

ing instruction set architecture, since our approach does
not require modifying the instruction formats to encode
control dependence information within them.

2. Architecture-Compatible Code Boosting
Our scheduling framework operates on scheduling

scopes, program fragments within which code motion is
allowed; these are scheduled one after another. A schedul-
ing scope is defined as a collection of basic blocks with
onehost basic block and one or moreguest basic blocks,
which are control-flow successors of the host. The number
of guest basic blocks is determined by the maximum num-
ber of conditional branches that can be crossed as specified
by the user. Instructions are scheduled primarily from the
host, but whenever there is an idle functional unit and no
available instruction in the host’s data ready set, the algo-
rithm looks for schedulable instructions from guest basic
blocks and boosts them into the host basic block subject to
semantic correctness constraints.

To preserve semantic correctness while moving
instructions up from guest basic blocks to the host, some
combination of the following three simple transformations
is performed:register renaming, register copy creation,
and instruction replication. These transformations are
applied subject to dataflow, control flow, and control
dependence information and employed only when
required to preserve semantic correctness.

2.1.Register Renaming
Register renaming is the key to avoiding the need for

having multiple shadow register files. To preserve pro-
gram semantics while performing illegal code motion of
the type illustrated in Figure 1(b), the result of the instruc-
tion in question must be stored in a location that is not live
on the alternate control flow path. Smith et al. accomplish
this by creating a duplicate shadow register file structure
from which the value is copied once the branch condition
is resolved. Instead, we rename the destination register as
well as all of its dependent uses to an unused register.

The scheduling algorithm maintains a register score-
board for determining which registers are in use, and uses
a first-fit policy for selecting a replacement register for
instructions that are boosted. The register scoreboard,
which is the static scheduler’s counterpart to thescore-
boards used in dynamic scheduling mechanisms [17], is
also used to determine when renaming is necessary. It is
initialized to mark those registers that are live on alternate
exits from the scheduling scope as busy, so that any
instructions that are moved beyond those exit points and
overwrite the live storage locations are renamed. Also, as
instructions are scheduled, the scoreboard is updated to
reflect the number of outstanding uses of the current vari-
able residing in each register, so that once all uses have
been scheduled, the register becomes available for reuse.

2.2.Register Copy Creation
Register renaming is not always sufficient for main-

taining correct program semantics. In cases where the
boosted instruction is one of multiple reaching definitions
[2] of a variable, a mechanism is needed for choosing the
appropriate definition based on the outcome of control
flow dependences. An example of such a case is shown in
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Abstract
Boosting, first introduced by Smith et al. [25], is an

instruction scheduling technique that increases the instruc-
tion-level parallelism by allowing the compiler to move
instructions speculatively up past conditional branches and
providing hardware support to delay committing the side
effects of the boosted instructions until the conditional
branches have been resolved. This paper proposes an
enhanced compilation technique similar to boosting that
provides performance improvements while maintaining
instruction set architecture compatibility and eliminating
the need for complex hardware support. The technique,
called Architecture-Compatible (AC) Boosting, has been
implemented for the IBM RS/6000 architecture. Code
scheduling and machine simulation tools have been imple-
mented, and experiments have been performed to demon-
strate the feasibility of AC boosting on the current as well
as future implementations of the IBM RS/6000 architec-
ture.

1. Motivations
Instruction scheduling is a compilation technique that

seeks to maximize functional unit utilization within a pro-
cessor. By scheduling long latency instructions early in the
instruction stream and filling dependence-induced stall
slots with independent instructions, its goal is to increase
the instruction-level parallelism exposed to the processor,
increase the average number of instructions issued per
cycle (IPC) [16], and consequently improve program per-
formance. Most modern compilers implement some form
of instruction scheduling, ranging from load and branch
delay slot filling [15] totrace scheduling [8, 12] andper-
colation scheduling [20] for VLIW processors.

Instruction scheduling techniques can be subdivided
into three main categories: those that are restricted to code
motion within basic blocks, those that allow code motion
between basic blocks only in the context of techniques
such as loop unrolling [33, 12] or software pipelining [29,
3], and those that allow speculative code motion between
basic blocks.Speculative code motion consists of moving
instructions between basic blocks that are not control flow
equivalent [11, 9], where the execution of one basic block
does not necessarily imply the execution of the other. The
control flow equivalence of two basic blocks A and B
means that any control flow path used to reach B must
pass through A (Adominates B in the control flow graph),
while any control flow path that passes through A must

also reach B (Bpostdominates A). Performing speculative
code motion requires adding corrective actions to ensure
that the semantics of the program are not changed.

1.1.Control Dependence Limitation
Heavily pipelined superscalar processors such as the

IBM RS/6000 [14, 21] or the DEC AXP suffer a perfor-
mance penalty when conditional branches are not resolved
early enough to keep the pipelines filled. The penalty paid
by early RISC designs with a single branch delay slot is
magnified both by the length and the number of pipelines.
Hence, locating instructions to fill the branch delay slots
becomes increasingly more important so that sufficient
program parallelism [19] is available to match the
increasedmachine parallelism [19] offered by the proces-
sor.

Others [18, 30, 26] have argued that speculative code
motion is necessary for extracting instruction-level paral-
lelism from branch-intensive, non-scientific programs.
While compilation techniques like loop unrolling and soft-
ware pipelining work well at extracting parallelism from
loop-intensive programs, they perform less effectively
with programs that are dominated by if-then-else control
flow constructs. Numerous approaches have been pro-
posed for implementing speculative code motion, both in
hardware and in software [17, 23, 27, 1].

1.2.Effective Static Code Scheduling Support
One of the most promising approaches for supporting

speculative code motion combines both hardware and soft-
ware techniques. It relegates code motion decisions to the
compiler and leaves the elimination of unwanted side
effects to the hardware. This approach is calledboosting
and was introduced by Smith et al. [25]. The authors
present a convincing argument against dynamic instruc-
tion scheduling methods, pointing out their hardware com-
plexity, limited instruction selection scope, and inability to
make use of control dependence information. In contrast,
they point out a static instruction scheduler’s ability to
exploit control dependence information and to select
instructions from a much larger scope.

To enhance available program parallelism, boosting
speculatively moves instructions up past conditional
branches in the compiler and provides hardware support to
delay committing the results and side effects of the
boosted instructions until the conditional branches have
been resolved. This is accomplished via tagging boosted
instructions with their control dependence information and
storing their side effects temporarily in shadow structures
until the program control flow resolves the branches in*.  Currently with IBM Corporation at Rochester, Minnesota


