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Abstract. The serialization constraints induced by the detection and en-
forcement of true data dependences have always been regarded as require-
ments for correct execution. We propose two data-speculative techniques—
source operand value prediction and dependence prediction—that can be
used to relax these constraints to allow instructions to execute before
their data dependences are resolved or even detected. We find that inter-
instruction dependences and source operand values are easily predictable.
These discoveries minimize the per-cycle instruction throughput (or IPC)
penalty of deeper pipelining of instruction dispatch and result in aver-
age integer program speedups ranging from 22% to 106%, depending on
machine issue width and pipeline depth.

1 Introduction

There are two restrictions that limit the degree of TPC that can be achieved
with sequential programs: control flow and data flow. Control flow limits IPC by
imposing serialization constraints at forks and joins in a program’s control flow
graph. Data flow limits IPC by forcing data-dependent pairs of instructions to
serialize. Examining the extent of these limits has been a popular and important
area of research (e.g. [1][2][3]). However, in light of the energies focused on elim-
inating control-flow restrictions on parallel instruction issue, surprisingly little
attention has been paid to eliminating data-flow restrictions on parallel issue.

In [5], Lipasti et al. introduce the notion of value locality and demonstrate
Load Value Prediction, or LVP, for predicting the results of load instructions at
dispatch. In [5], they generalize the LVP approach to all instructions to allow one
to exceed the classical dataflow limit.

Detecting data dependences between multiple instructions in flight is an inher-
ently sequential task that becomes very expensive combinatorially as the number
of concurrent in-flight instructions increases. Olukotun et al. argue convincingly
against wide-dispatch superscalars because of this very fact [7]. Wide dispatch is
difficult to implement and has adverse impact on cycle time because all instruc-
tions in a dispatch group must be simultaneously cross-checked.

One obvious solution to the problem of the complexity of dependence detec-
tion is to pipeline 1t to minimize impact on cycle time. In Section 3 we propose
a pipelined approach to dependence detection that facilitates implementation
of wide instruction dispatch. However, pipelined dependence checking aggrav-
ates the cost of branch mispredictions by delaying resolution of mispredicted



Table 1. Benchmark set
Benchmark Run Length BHT Mispred BTB Mispred RAS Mispred

20 79.6M 12.0 % (1.7%) 8.5% (0.8%) 0.0% (0.0%)
m88ksim 107.0M 2.7 % (0.4%) 4.3% (0.5%) 0.0% (0.0%)
gee 181.8M 5.1 % (0.6%) 8.7% (1.1%) 3.9% (0.0%)
compress 39.7M 5.9 % (0.7%) 0.0% (0.0%) 0.0% (0.0%)
li 56.8M 3.0 % (0.4%) 5.3% (0.5%) 12.1% (0.3%)
iipeg 92.1M 2.7 % (0.4%) 0.6% (0.1%) 18.7% (0.1%)
perl 50.1M 2.4 % (0.3%) 11.1% (1.2%) 4.1% (0.1%)
vortex 153.1M 0.6 % (0.1%) 1.6% (0.2%) 11.4% (0.1%)

branches. In Figure 1, we see the IPC impact of pipelined dependence checking
on a 16-dispatch machine with an advanced branch predictor and no other struc-
tural resource limitations (refer to Section 2 for further details). Lengthening
dispatch to two or three pipeline stages severely increases the number of cycles
during which no useful instructions are dispatched and increases CPI (decreases
IPC) dramatically, to the point where sustaining even 2-3 TPC becomes very
difficult.

We propose to alleviate these problems in two ways: by introducing a scalable
and speculative approach to dependence detection called dependence prediction
and also by exploiting a modified approach to value prediction called source
operand value prediction [6]. Fundamental to these is the notion that maintain-
ing semantic correctness does not require rigorous enforcement of source-to-sink
data-flow relationships or even exact detection of these relationships before we
start execution. Rather, dynamically adaptive techniques for predicting values
as well as dependences allow early issue of instructions, before their dependences
are resolved or even known. We find that the dependence relationships between
instructions are quite predictable, and propose dependence prediction for cap-
turing and exploiting this value locality to allow early issue of instructions in
wide-dispatch machines. Furthermore, we find that combining value and depend-
ence prediction leads to significant performance increases.
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Fig. 1. Branch Misprediction Penalty. The approximate contribution of RAS, BTB,
and BHT mispredictions to overall CPI is shown for single-cycle dispatch (left bar),
2-cycle (middle bar) and 3-cycle (right bar) pipelined dispatch.



2 Experimental Framework

To evaluate the performance potential of the dependence prediction and source
operand value prediction, we implement a flexible emulation-based simulation
framework for the PowerPC instruction set. The simulation framework is built
around the PSIM PowerPC functional emulator that is distributed as part of
the GDB debugger, and accurately models branch and fetch prediction, dispatch
width constraints, and all branch misprediction and data dependence delays for
realistic instruction latencies.

We selected the SPEC95 integer benchmark suite for our study, since it is
readily available, widely used, and well-understood. Table 1 shows the run length
and BHT (branch history table), BTB (branch target buffer), and RAS (return
address stack) branch misprediction rates. The BHT, BTB, and RAS mispredic-
tion rates are shown with respect to total number of predictions and total number
of completed instructions. The benchmarks are compiled for PowerPC GCC ver-
sion 2.7.2 at full optimization. PSIM emulates user-state and NetBSD library
code, but does not account for supervisor-state execution. All of the benchmarks
are run to completion with reduced input sets and/or fewer iterations than in the
SPEC95 reference runs.

The machine model used in our simulations has a canonical four-stage pipeline:
fetch, dispatch, execute, and complete. The width of the fetch and dispatch stages
can be varied arbitrarily, while the execute stage has unlimited width. The latency
of the dispatch stage can also be varied from one to three cycles, while the latency
of the execute stage is instruction-dependent and is summarized in Table 2. All
functional units are pipelined, all architected registers are dynamically renamed,
and instructions are allowed to execute out-of-order subject to data dependences.
However, branches are executed in program order, and loads must wait until the
addresses of all preceding stores are known. If an alias to a store exists, the load
18 delayed until the store’s data becomes available and 1s forwarded directly to
the load (in effect, the processor renames memory).

Our model uses a modern gshare branch predictor [4] with a 256K entry
branch history table (BHT) with 2 bits per entry that is indexed by the XOR of
the 18-bit branch history register and the branch instruction address. The RAS
and the untagged, direct-mapped BTB both have 1024 entries. Fetch and branch
prediction both occur during the fetch stage of the pipeline, while instructions
are fetched from a dual-banked instruction cache with line size equal to the

Table 2. Instruction Latencies

Instruction Class Issue Latency Result Latency

Integer Arithmetic and Logical 1 1
Integer Multiply 1 3

Integer Divide 1 10

Load/Store 1 2
Branch(pred/mispred) 1 0/1




Table 3. Machine Model Parameters

Parameter Value

Branch Predictor 3-wide gshare(16)

Fetch and Dispatch Width 4,8,16

Completion Width and Instruction Window Unrestricted
Instruction and Data Cache Perfect

specified fetch width (this configuration is described as interleaved sequential in
[8]). Up to three conditional branches can be predicted per cycle with the gshare
predictor. The key parameters for the machine model used in our simulations are
summarized in Table 3.

Additional simulation results for a variety of machine models as well as float-
ing point benchmarks were omitted from this paper, but are available in [9].

3 Pipelined Dispatch Structure

In this section, we describe a pipelined dispatch structure that facilitates wide
dispatch by reducing the circuit complexity and cycle-time demands imposed by
simultaneous cross-checking of data dependences within a large dispatch group.
In this scheme, dependence checking is divided into two pipeline stages. During
the first stage, all destination registers within a dispatch group are identified and
renamed, and the rename mappings are written into the dependence-resolution
buffer (DRB) and the mapping file (MF). During the second stage, all source
registers are identified and their rename mappings are looked up in the DRB and
the shadow mapping file (MF’). In our microarchitecture, all register writes are
renamed to slots in a value silo. The value silo is used to scoreboard, hold, and
forward the results of instructions until they are ready to complete and write
back into the architected register file.

As shown in Figure 2, during the first pipeline stage P1 of pipelined dispatch,
all instructions in a fetch group allocate value silo slots for their destination
operands, and then write the (register number, value silo slot) mapping tuples
into their dependence-resolution buffer (DRB) entries. At the same time, the
value silo slot numbers are written into the mapping file (MF), a table indexed
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Fig. 2. Pipelined Dispatch Structure. During stage P1, all instructions in a fetch group
write destination register rename mappings into the DRB and the MF. During stage
P2, the instructions search the DRB and MF’ for source register rename mappings.
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by the register number. If a dispatch group contains more than one write to the
same architected register, arbitration logic selects the last write before a taken or
predicted-taken branch. During the second pipeline stage P2, all instructions in a
fetch group search ahead in the DRB for a register number matching each of their
input registers (the DRB is multi-ported and content-addressable). If multiple
matching entries are found, the closest one (i.e. the most recent definition) is
selected. If no matching entry is found, the shadow mapping file (MF’) entry for
the register is used instead. MF’ summarizes the register-to-value silo mappings
for all previous fetch groups, and is a one-cycle-delayed copy of the mapping file
MF. If no register-to-value-silo mapping exists, the appropriate MF’ entry will
instead point to the architected register file. At the end of P2, all the instructions
in the fetch group know where in the value silo they can find their input operands,
and can check the scoreboarded valid bits to see if they are available.

Whenever a predicted branch occurs within a dispatch group, a snapshot
of the mapping file MF that includes all register writes through the branch is
pushed onto a branch recovery stack (BRS). Any instruction following a taken
or predicted-taken branch within a fetch group is discarded and prevented from
writing into either the DRB or the MF. When a branch misprediction is resolved,
any instructions that are newer than the branch are discarded along with their
value silo slots, and fetching starts over from the actual destination of the mispre-
dicted branch, while the MF snapshot corresponding to that branch is retrieved
from the branch recovery stack.

As described here, instruction dispatch is pipelined into two stages. However,
it 1s easy to envision even deeper pipelining of this process. Hence, we simulate
the performance effects of and present results for one-; two-, and three-stage
dispatch pipelines.

4 Dependence Prediction and Recovery

Figure 1 illustrates the detrimental performance effects of a pipelined dispatch
structure, which increases the number of cycles between a branch mispredic-
tion and the detection of that misprediction, hence aggravating the misprediction
penalty and severely limiting performance. To alleviate these effects, we propose
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Fig. 3. Dependence Prediction Mechanism. During stage P1, the source operand po-
sition, PC, and branch history register (BHR) are hashed together to index the de-
pendence prediction table (DPT), which predicts the value silo entry that contains the
source operand. During P2 the prediction is verified.



dependence prediction that can frequently short-circuit multi-cycle dispatch by
predicting the dependences between instructions in flight and speculatively al-
lowing instructions that are predicted to be data ready to execute in parallel with
exact dependence checking.

As shown in Figure 3, dependence prediction is implemented with a direct-
mapped dependence prediction table (DPT) with 8K entries indexed by hashing
together the instruction address bits, the gshare branch predictor’s branch his-
tory register (BHR), and the relative position of the operand (i.e. first, second, or
third) being looked up. Each DPT entry contains a numeric value which reflects
the relative index of that input operand’s source in the value silo. This relative
index is used to check the value silo to see if the operand is already available. If
all of the instruction’s predicted input operands are available, the instruction is
permitted to issue early, after the first dispatch cycle. In the second (or third,
in the three-cycle dispatch pipeline) dispatch cycle, exact dependence informa-
tion becomes available, and the earlier prediction is verified against the actual
information. In case of a mismatch, the DPT entry is replaced with the correct
relative position, and the early issue is cancelled.

The total number of operands predicted, average number of predictions per
instruction, and percentage of correct predictions are shown in Table 4. We find
that for most benchmarks, the DPT achieves a respectable hit rate. For two
benchmarks—go and perl-the dependence prediction hit rates were rather low.
This behavior can be attributed to the unpredictable branch behavior of these
three benchmarks, since unpredictable branches can lead to unpredictable de-
pendence distances when there are multiple definitions reaching a use. As seen
in Figure 1 and Table 1, both go and perl have high BTB misprediction rates,
while go has a high BHT misprediction rates.

In Figure 5 we show the effect of dependence prediction on IPC for dispatch
widths of four, eight, and sixteen, and dispatch latencies of one, two and three
cycles. Without dependence prediction, the best performance is obtained with
single-cycle dispatch, which sustains about 2.8 TPC in the worst case (go), and
4.8 TPC in the best case (m88ksim) with 16-wide dispatch. Lengthening dispatch
to two and three cycles degrades go to asymptotic IPC of 1.7 and 1.3, respect-
ively, while reducing ijpeg (which is now the best performer) to 3.7 and 2.5

Table 4. Dependence Prediction Results

Benchmark Operands Pred Per Instr Correct

go 89.6M 1.126 38.0%
ma8&8ksim 113.4M 1.060 77.4%
gcc 74.2M 0.958 59.7%
compress 40.6M 1.023 87.3%
i 49.8M 0.878 72.4%
iipeg 92.3M  1.001 71.9%
perl 47.3M 0.944 48.2%

vortex 120.7M 0.788 71.3%




IPC. Furthermore, wider dispatch provides rapidly diminishing returns, hence
eroding incentive for building processors with dispatch widths exceeding four.
Fortunately, dependence prediction is able to alleviate these trends by reducing
the average dispatch latency. For both two- and three-cycle dispatch, dependence
prediction significantly elevates the sustainable IPC and brings it much closer
to the single-cycle case. Furthermore, wider dispatch again harvests greater IPC,
restoring incentive for building wider superscalar processors. Three benchmarks—
compress, i, and ijpeg—behave particularly well, eliminating nearly all of the
performance penalty induced by two- and three-cycle dispatch.

5 Source Operand Value Prediction and Recovery

A complementary approach for reducing the adverse performance impact of
pipelined dispatch involves a variation on previous work on value prediction
[6]. In earlier work, the destination operands (i.e. results) of instructions were
predicted via table-lookup at fetch/dispatch, and then speculatively forwarded
directly to dependent instructions. The shortcoming of this approach is that
dependence relationships must be detected before values can be forwarded to
dependent instructions. To overcome this problem, we propose predicting the
values of source operands, rather than destination operands, hence decoupling
value-speculative instruction dispatch entirely from dependence detection. As in
the earlier work, we predict only floating-point and general-purpose register op-
erands, and not condition registers or special-purpose registers.

Source operand value prediction is illustrated in Figure 4. As in [6], we use a
value prediction table (VPT) to keep track of past operand values, and exploit
the value locality [5] of operands to predict future values. In our experiments,
the VPT is direct-mapped, 32KB in size, and is indexed by hashing together the
instruction address bits and the relative position of the operand (i.e. first, second,
or third) being looked up. Source operand value prediction also uses a direct-
mapped classification table (CT) similar to the one proposed in [6] for classifying
the predictability of source operands and deciding whether or not the operands
should be predicted. In our experiments, the CT is direct-mapped, has 8K entries
with a 2-bit saturating counter at each entry, and is indexed by hashing together

Classification Table (CT) Value Prediction Table (VPT,
<v> <pred history> PC of pred. instr. <v>  <value history>
v [ [ ]
Oper. Position
Predict?
=
Prediction Result Predicted Value Updated Value

Fig. 4. Source Operand Value Prediction Mechanism. The source operand position and
PC are hashed together to index the VPT and CT. The prediction and value histories
are updated at completion.



Table 5. Source Operand Value Prediction Results

Value CT Pred CT Unpred Dep Pred
Benchmark Locality Hit Rate  Hit Rate Hit Rate

go 45.3%  77.0% 83.7% 42.1%
m88ksim 56.1%  92.8% 89.6% 89.6%
gce 40.9%  78.0% 89.6% 63.0%
compress 42.4%  97.5% 98.8% 94.6%
L 33.7%  76.9% 92.9% 75.4%
ijpeg 35.2%  91.6% 95.9% 81.2%
perl 44.5%  76.4% 84.3% 54.4%
vortex 32.9% 83.3% 93.9% 82.5%

the instruction address bits and the relative position of the operand being looked
up.

When all of the input operands of an instruction are classified as predictable,
the instruction is permitted to issue early, after the first dispatch cycle (instruc-
tions with unpredictable source operands may still end up executing sooner than
without value prediction, in cases where an operand that is predicted is on a
critical path). Once dispatch finishes and exact dependence information becomes
available, the instruction waits for its verified operands to become available in
the value silo (operands in the value silo become verified when the instructions
that generate them have validated all of their input operands) and then compares
them against its predicted operands. If they match, the result operands of the
instruction are marked verified, and the instruction is allowed to complete in
program order. If they don’t match, the instruction re-executes with the correct
operands. Just as in [6], this results in a one-cycle misprediction penalty, since
the instruction in question as well as all of its dependents do not execute with
their correct inputs until one cycle later than if there had been no prediction.

Table 5 summarizes the value locality, classification hit rates, and dependence
prediction hit rates for each of our benchmarks. Value locality (column two), as
defined in [5], is the ratio of the dynamic count of source operands that are pre-
dictable with the VPT mechanism and the dynamic count of all source operands.
The predictable hit rate (column three) is the ratio of the number of predictable
source operands that were identified as such by the CT and the total number of
predictable source operands. Similarly, the unpredictable hit rate (column four)
18 the ratio of the number of unpredictable source operands that were identified
as such by the CT and the total number of unpredictable source operands. The
dependence prediction hit rate (column five) is included to show the interaction
between value prediction and dependence prediction. When both types of predic-
tion are used, operands that are deemed unpredictable by the CT are relegated
to dependence prediction. We see that the dependence prediction hit rates are
better across the board than the ones shown in Table 4, indicating that the tech-
niques are mutually synergistic. We also note that the value locality numbers are
similar to those reported earlier [6], while the CT hit rates are somewhat better.



Fetch Width=4

6.0 [ H_FWWI -
O 50 - LH—D-MP—’+ + -
& - -
£ 30r - ]
o C L | ]
§ 20 ]
» 10t ]

0.0 go m88ksim gcc compress i ijpeg perl  vortex

6.0 Fetch Width=8 T T Basalife

~ +DP ]
O 50 F +DP+VP a
& - -
o 4.0 C .
]
g 2.0 C ]
» 1or ]

0.0

go m88ksim gcc compress i peg perl  vortex

6.0 Fetch Width=16 aseline
+DP
50 E +DP+vP

il

3.0

2.0

1.0

0.0 go m88ksim gcc compress i ijpeg perl  vortex
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The former 1s not surprising, since source operands should be no more or less
predictable than destination operands, while we attribute the latter improvement
to the larger CT size used in these experiments.

In Figure 5 we show the effect of dependence prediction and value prediction
on IPC for various dispatch widths of four, eight, and sixteen, and dispatch laten-
cies of one, two and three cycles. The best performance, obviously, is obtained
with value prediction and single-cycle dispatch, which sustains 3.6 TPC in the
worst case (go), and 5.9 TPC in the best case (vortex) with 16-wide dispatch.
Lengthening dispatch latency to two and three cycles degrades go to 3.0 and 2.8
IPC, respectively, while reducing vortex to 5.8 and 5.6 IPC. Value and depend-
ence prediction improve performance significantly over the baseline in all cases,
and wider dispatch harvests even greater additional IPC, restoring incentive for
building wide-dispatch processors.

We see that with dependence and value prediction, virtually all of the per-
formance penalty associated with pipelined dispatch has been eliminated, al-
lowing even three-cycle dispatch to nearly match the performance of single-cycle
dispatch. Even the worst case benchmark (go) only degrades by 17% from single-
cycle to two-cycle dispatch, while the best case (vortex) degrades by only 2% for
two-cycle dispatch and 4% for three-cycle dispatch. Furthermore, three-cycle dis-



patch with value and dependence prediction can usually at least match, and fre-
quently clearly outperform (compress, vortex, m88ksim, li), single-cycle dispatch
without value or dependence prediction.

6 Conclusions

We make three major contributions in this paper. First of all, we propose a
pipelined dispatch structure that eases the implementation of wide-dispatch mi-
croarchitectures. Second, we propose dependence prediction, a speculative tech-
nique for alleviating the performance penalty of multi-cycle pipelined dispatch.
Third, we propose source operand value prediction, which is a modified approach
to value prediction that decouples instruction execution from dependence check-
ing by predicting source operands rather than destination operands. We show
that these techniques can speculate beyond data-flow and dependence detection
bottlenecks to deliver significant improvements in uniprocessor performance, par-
ticularly for machines with wide and deeply pipelined instruction dispatch.
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