
The Performance Potential of Value andDependence PredictionMikko H. Lipasti and John P. ShenDepartment of Electrical and Computer EngineeringCarnegie Mellon University, Pittsburgh PA, 15213Abstract. The serialization constraints induced by the detection and en-forcement of true data dependences have always been regarded as require-ments for correct execution. We propose two data-speculative techniques{source operand value prediction and dependence prediction{that can beused to relax these constraints to allow instructions to execute beforetheir data dependences are resolved or even detected. We �nd that inter-instruction dependences and source operand values are easily predictable.These discoveries minimize the per-cycle instruction throughput (or IPC)penalty of deeper pipelining of instruction dispatch and result in aver-age integer program speedups ranging from 22% to 106%, depending onmachine issue width and pipeline depth.1 IntroductionThere are two restrictions that limit the degree of IPC that can be achievedwith sequential programs: control 
ow and data 
ow. Control 
ow limits IPC byimposing serialization constraints at forks and joins in a program's control 
owgraph. Data 
ow limits IPC by forcing data-dependent pairs of instructions toserialize. Examining the extent of these limits has been a popular and importantarea of research (e.g. [1][2][3]). However, in light of the energies focused on elim-inating control-
ow restrictions on parallel instruction issue, surprisingly littleattention has been paid to eliminating data-
ow restrictions on parallel issue.In [5], Lipasti et al. introduce the notion of value locality and demonstrateLoad Value Prediction, or LVP, for predicting the results of load instructions atdispatch. In [5], they generalize the LVP approach to all instructions to allow oneto exceed the classical data
ow limit.Detecting data dependences between multiple instructions in 
ight is an inher-ently sequential task that becomes very expensive combinatorially as the numberof concurrent in-
ight instructions increases. Olukotun et al. argue convincinglyagainst wide-dispatch superscalars because of this very fact [7]. Wide dispatch isdi�cult to implement and has adverse impact on cycle time because all instruc-tions in a dispatch group must be simultaneously cross-checked.One obvious solution to the problem of the complexity of dependence detec-tion is to pipeline it to minimize impact on cycle time. In Section 3 we proposea pipelined approach to dependence detection that facilitates implementationof wide instruction dispatch. However, pipelined dependence checking aggrav-ates the cost of branch mispredictions by delaying resolution of mispredicted



Table 1. Benchmark setBenchmark Run Length BHT Mispred BTB Mispred RAS Mispredgo 79.6M 12.0 % (1.7%) 8.5% (0.8%) 0.0% (0.0%)m88ksim 107.0M 2.7 % (0.4%) 4.3% (0.5%) 0.0% (0.0%)gcc 181.8M 5.1 % (0.6%) 8.7% (1.1%) 3.9% (0.0%)compress 39.7M 5.9 % (0.7%) 0.0% (0.0%) 0.0% (0.0%)li 56.8M 3.0 % (0.4%) 5.3% (0.5%) 12.1% (0.3%)ijpeg 92.1M 2.7 % (0.4%) 0.6% (0.1%) 18.7% (0.1%)perl 50.1M 2.4 % (0.3%) 11.1% (1.2%) 4.1% (0.1%)vortex 153.1M 0.6 % (0.1%) 1.6% (0.2%) 11.4% (0.1%)branches. In Figure 1, we see the IPC impact of pipelined dependence checkingon a 16-dispatch machine with an advanced branch predictor and no other struc-tural resource limitations (refer to Section 2 for further details). Lengtheningdispatch to two or three pipeline stages severely increases the number of cyclesduring which no useful instructions are dispatched and increases CPI (decreasesIPC) dramatically, to the point where sustaining even 2-3 IPC becomes verydi�cult.We propose to alleviate these problems in two ways: by introducing a scalableand speculative approach to dependence detection called dependence predictionand also by exploiting a modi�ed approach to value prediction called sourceoperand value prediction [6]. Fundamental to these is the notion that maintain-ing semantic correctness does not require rigorous enforcement of source-to-sinkdata-
ow relationships or even exact detection of these relationships before westart execution. Rather, dynamically adaptive techniques for predicting valuesas well as dependences allow early issue of instructions, before their dependencesare resolved or even known. We �nd that the dependence relationships betweeninstructions are quite predictable, and propose dependence prediction for cap-turing and exploiting this value locality to allow early issue of instructions inwide-dispatch machines. Furthermore, we �nd that combining value and depend-ence prediction leads to signi�cant performance increases.
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RAS MispredFig. 1. Branch Misprediction Penalty. The approximate contribution of RAS, BTB,and BHT mispredictions to overall CPI is shown for single-cycle dispatch (left bar),2-cycle (middle bar) and 3-cycle (right bar) pipelined dispatch.



2 Experimental FrameworkTo evaluate the performance potential of the dependence prediction and sourceoperand value prediction, we implement a 
exible emulation-based simulationframework for the PowerPC instruction set. The simulation framework is builtaround the PSIM PowerPC functional emulator that is distributed as part ofthe GDB debugger, and accurately models branch and fetch prediction, dispatchwidth constraints, and all branch misprediction and data dependence delays forrealistic instruction latencies.We selected the SPEC95 integer benchmark suite for our study, since it isreadily available, widely used, and well-understood. Table 1 shows the run lengthand BHT (branch history table), BTB (branch target bu�er), and RAS (returnaddress stack) branch misprediction rates. The BHT, BTB, and RAS mispredic-tion rates are shown with respect to total number of predictions and total numberof completed instructions. The benchmarks are compiled for PowerPC GCC ver-sion 2.7.2 at full optimization. PSIM emulates user-state and NetBSD librarycode, but does not account for supervisor-state execution. All of the benchmarksare run to completion with reduced input sets and/or fewer iterations than in theSPEC95 reference runs.The machinemodel used in our simulationshas a canonical four-stage pipeline:fetch, dispatch, execute, and complete. The width of the fetch and dispatch stagescan be varied arbitrarily, while the execute stage has unlimited width. The latencyof the dispatch stage can also be varied from one to three cycles, while the latencyof the execute stage is instruction-dependent and is summarized in Table 2. Allfunctional units are pipelined, all architected registers are dynamically renamed,and instructions are allowed to execute out-of-order subject to data dependences.However, branches are executed in program order, and loads must wait until theaddresses of all preceding stores are known. If an alias to a store exists, the loadis delayed until the store's data becomes available and is forwarded directly tothe load (in e�ect, the processor renames memory).Our model uses a modern gshare branch predictor [4] with a 256K entrybranch history table (BHT) with 2 bits per entry that is indexed by the XOR ofthe 18-bit branch history register and the branch instruction address. The RASand the untagged, direct-mapped BTB both have 1024 entries. Fetch and branchprediction both occur during the fetch stage of the pipeline, while instructionsare fetched from a dual-banked instruction cache with line size equal to theTable 2. Instruction LatenciesInstruction Class Issue Latency Result LatencyInteger Arithmetic and Logical 1 1Integer Multiply 1 3Integer Divide 1 10Load/Store 1 2Branch(pred/mispred) 1 0/1



Table 3. Machine Model ParametersParameter ValueBranch Predictor 3-wide gshare(16)Fetch and Dispatch Width 4,8,16Completion Width and Instruction Window UnrestrictedInstruction and Data Cache Perfectspeci�ed fetch width (this con�guration is described as interleaved sequential in[8]). Up to three conditional branches can be predicted per cycle with the gsharepredictor. The key parameters for the machine model used in our simulations aresummarized in Table 3.Additional simulation results for a variety of machine models as well as 
oat-ing point benchmarks were omitted from this paper, but are available in [9].3 Pipelined Dispatch StructureIn this section, we describe a pipelined dispatch structure that facilitates widedispatch by reducing the circuit complexity and cycle-time demands imposed bysimultaneous cross-checking of data dependences within a large dispatch group.In this scheme, dependence checking is divided into two pipeline stages. Duringthe �rst stage, all destination registers within a dispatch group are identi�ed andrenamed, and the rename mappings are written into the dependence-resolutionbu�er (DRB) and the mapping �le (MF). During the second stage, all sourceregisters are identi�ed and their rename mappings are looked up in the DRB andthe shadow mapping �le (MF'). In our microarchitecture, all register writes arerenamed to slots in a value silo. The value silo is used to scoreboard, hold, andforward the results of instructions until they are ready to complete and writeback into the architected register �le.As shown in Figure 2, during the �rst pipeline stage P1 of pipelined dispatch,all instructions in a fetch group allocate value silo slots for their destinationoperands, and then write the (register number, value silo slot) mapping tuplesinto their dependence-resolution bu�er (DRB) entries. At the same time, thevalue silo slot numbers are written into the mapping �le (MF), a table indexed
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DstFig. 2. Pipelined Dispatch Structure. During stage P1, all instructions in a fetch groupwrite destination register rename mappings into the DRB and the MF. During stageP2, the instructions search the DRB and MF' for source register rename mappings.



by the register number. If a dispatch group contains more than one write to thesame architected register, arbitration logic selects the last write before a taken orpredicted-taken branch. During the second pipeline stage P2, all instructions in afetch group search ahead in the DRB for a register number matching each of theirinput registers (the DRB is multi-ported and content-addressable). If multiplematching entries are found, the closest one (i.e. the most recent de�nition) isselected. If no matching entry is found, the shadow mapping �le (MF') entry forthe register is used instead. MF' summarizes the register-to-value silo mappingsfor all previous fetch groups, and is a one-cycle-delayed copy of the mapping �leMF. If no register-to-value-silo mapping exists, the appropriate MF' entry willinstead point to the architected register �le. At the end of P2, all the instructionsin the fetch group know where in the value silo they can �nd their input operands,and can check the scoreboarded valid bits to see if they are available.Whenever a predicted branch occurs within a dispatch group, a snapshotof the mapping �le MF that includes all register writes through the branch ispushed onto a branch recovery stack (BRS). Any instruction following a takenor predicted-taken branch within a fetch group is discarded and prevented fromwriting into either the DRB or the MF. When a branch misprediction is resolved,any instructions that are newer than the branch are discarded along with theirvalue silo slots, and fetching starts over from the actual destination of the mispre-dicted branch, while the MF snapshot corresponding to that branch is retrievedfrom the branch recovery stack.As described here, instruction dispatch is pipelined into two stages. However,it is easy to envision even deeper pipelining of this process. Hence, we simulatethe performance e�ects of and present results for one-, two-, and three-stagedispatch pipelines.4 Dependence Prediction and RecoveryFigure 1 illustrates the detrimental performance e�ects of a pipelined dispatchstructure, which increases the number of cycles between a branch mispredic-tion and the detection of that misprediction, hence aggravating the mispredictionpenalty and severely limiting performance. To alleviate these e�ects, we propose
Value

Dispatch Group
P1: Src

Silo

PC

BHR

DPT
<v><value silo index>DstFig. 3. Dependence Prediction Mechanism. During stage P1, the source operand po-sition, PC, and branch history register (BHR) are hashed together to index the de-pendence prediction table (DPT), which predicts the value silo entry that contains thesource operand. During P2 the prediction is veri�ed.



dependence prediction that can frequently short-circuit multi-cycle dispatch bypredicting the dependences between instructions in 
ight and speculatively al-lowing instructions that are predicted to be data ready to execute in parallel withexact dependence checking.As shown in Figure 3, dependence prediction is implemented with a direct-mapped dependence prediction table (DPT) with 8K entries indexed by hashingtogether the instruction address bits, the gshare branch predictor's branch his-tory register (BHR), and the relative position of the operand (i.e. �rst, second, orthird) being looked up. Each DPT entry contains a numeric value which re
ectsthe relative index of that input operand's source in the value silo. This relativeindex is used to check the value silo to see if the operand is already available. Ifall of the instruction's predicted input operands are available, the instruction ispermitted to issue early, after the �rst dispatch cycle. In the second (or third,in the three-cycle dispatch pipeline) dispatch cycle, exact dependence informa-tion becomes available, and the earlier prediction is veri�ed against the actualinformation. In case of a mismatch, the DPT entry is replaced with the correctrelative position, and the early issue is cancelled.The total number of operands predicted, average number of predictions perinstruction, and percentage of correct predictions are shown in Table 4. We �ndthat for most benchmarks, the DPT achieves a respectable hit rate. For twobenchmarks{go and perl{the dependence prediction hit rates were rather low.This behavior can be attributed to the unpredictable branch behavior of thesethree benchmarks, since unpredictable branches can lead to unpredictable de-pendence distances when there are multiple de�nitions reaching a use. As seenin Figure 1 and Table 1, both go and perl have high BTB misprediction rates,while go has a high BHT misprediction rates.In Figure 5 we show the e�ect of dependence prediction on IPC for dispatchwidths of four, eight, and sixteen, and dispatch latencies of one, two and threecycles. Without dependence prediction, the best performance is obtained withsingle-cycle dispatch, which sustains about 2.8 IPC in the worst case (go), and4.8 IPC in the best case (m88ksim) with 16-wide dispatch. Lengthening dispatchto two and three cycles degrades go to asymptotic IPC of 1.7 and 1.3, respect-ively, while reducing ijpeg (which is now the best performer) to 3.7 and 2.5Table 4. Dependence Prediction ResultsBenchmark Operands Pred Per Instr Correctgo 89.6M 1.126 38.0%m88ksim 113.4M 1.060 77.4%gcc 74.2M 0.958 59.7%compress 40.6M 1.023 87.3%li 49.8M 0.878 72.4%ijpeg 92.3M 1.001 71.9%perl 47.3M 0.944 48.2%vortex 120.7M 0.788 71.3%



IPC. Furthermore, wider dispatch provides rapidly diminishing returns, henceeroding incentive for building processors with dispatch widths exceeding four.Fortunately, dependence prediction is able to alleviate these trends by reducingthe average dispatch latency. For both two- and three-cycle dispatch, dependenceprediction signi�cantly elevates the sustainable IPC and brings it much closerto the single-cycle case. Furthermore, wider dispatch again harvests greater IPC,restoring incentive for building wider superscalar processors. Three benchmarks{compress, li, and ijpeg{behave particularly well, eliminating nearly all of theperformance penalty induced by two- and three-cycle dispatch.5 Source Operand Value Prediction and RecoveryA complementary approach for reducing the adverse performance impact ofpipelined dispatch involves a variation on previous work on value prediction[6]. In earlier work, the destination operands (i.e. results) of instructions werepredicted via table-lookup at fetch/dispatch, and then speculatively forwardeddirectly to dependent instructions. The shortcoming of this approach is thatdependence relationships must be detected before values can be forwarded todependent instructions. To overcome this problem, we propose predicting thevalues of source operands, rather than destination operands, hence decouplingvalue-speculative instruction dispatch entirely from dependence detection. As inthe earlier work, we predict only 
oating-point and general-purpose register op-erands, and not condition registers or special-purpose registers.Source operand value prediction is illustrated in Figure 4. As in [6], we use avalue prediction table (VPT) to keep track of past operand values, and exploitthe value locality [5] of operands to predict future values. In our experiments,the VPT is direct-mapped, 32KB in size, and is indexed by hashing together theinstruction address bits and the relative position of the operand (i.e. �rst, second,or third) being looked up. Source operand value prediction also uses a direct-mapped classi�cation table (CT) similar to the one proposed in [6] for classifyingthe predictability of source operands and deciding whether or not the operandsshould be predicted. In our experiments, the CT is direct-mapped, has 8K entrieswith a 2-bit saturating counter at each entry, and is indexed by hashing together
Classification Table (CT) Value Prediction Table (VPT)
<v> <v> <value history><pred history>
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Predict?Fig. 4. Source Operand Value Prediction Mechanism. The source operand position andPC are hashed together to index the VPT and CT. The prediction and value historiesare updated at completion.



Table 5. Source Operand Value Prediction ResultsValue CT Pred CT Unpred Dep PredBenchmark Locality Hit Rate Hit Rate Hit Ratego 45.3% 77.0% 83.7% 42.1%m88ksim 56.1% 92.8% 89.6% 89.6%gcc 40.9% 78.0% 89.6% 63.0%compress 42.4% 97.5% 98.8% 94.6%li 33.7% 76.9% 92.9% 75.4%ijpeg 35.2% 91.6% 95.9% 81.2%perl 44.5% 76.4% 84.3% 54.4%vortex 32.9% 83.3% 93.9% 82.5%the instruction address bits and the relative position of the operand being lookedup.When all of the input operands of an instruction are classi�ed as predictable,the instruction is permitted to issue early, after the �rst dispatch cycle (instruc-tions with unpredictable source operands may still end up executing sooner thanwithout value prediction, in cases where an operand that is predicted is on acritical path). Once dispatch �nishes and exact dependence information becomesavailable, the instruction waits for its veri�ed operands to become available inthe value silo (operands in the value silo become veri�ed when the instructionsthat generate them have validated all of their input operands) and then comparesthem against its predicted operands. If they match, the result operands of theinstruction are marked veri�ed, and the instruction is allowed to complete inprogram order. If they don't match, the instruction re-executes with the correctoperands. Just as in [6], this results in a one-cycle misprediction penalty, sincethe instruction in question as well as all of its dependents do not execute withtheir correct inputs until one cycle later than if there had been no prediction.Table 5 summarizes the value locality, classi�cation hit rates, and dependenceprediction hit rates for each of our benchmarks. Value locality (column two), asde�ned in [5], is the ratio of the dynamic count of source operands that are pre-dictable with the VPT mechanism and the dynamic count of all source operands.The predictable hit rate (column three) is the ratio of the number of predictablesource operands that were identi�ed as such by the CT and the total number ofpredictable source operands. Similarly, the unpredictable hit rate (column four)is the ratio of the number of unpredictable source operands that were identi�edas such by the CT and the total number of unpredictable source operands. Thedependence prediction hit rate (column �ve) is included to show the interactionbetween value prediction and dependence prediction. When both types of predic-tion are used, operands that are deemed unpredictable by the CT are relegatedto dependence prediction. We see that the dependence prediction hit rates arebetter across the board than the ones shown in Table 4, indicating that the tech-niques are mutually synergistic. We also note that the value locality numbers aresimilar to those reported earlier [6], while the CT hit rates are somewhat better.
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Fig. 5. E�ect of Dependence and Value Prediction. The sustained IPC for dispatchwidths of 4, 8 and 16 is shown for single-cycle dispatch (left bar), two-cycle dispatch(middle bar), and three-cycle dispatch (right bar). Each stacked bar shows cumulativeIPC attainable with dependence prediction (+DP) and value prediction (+DP+VP).The former is not surprising, since source operands should be no more or lesspredictable than destination operands, while we attribute the latter improvementto the larger CT size used in these experiments.In Figure 5 we show the e�ect of dependence prediction and value predictionon IPC for various dispatch widths of four, eight, and sixteen, and dispatch laten-cies of one, two and three cycles. The best performance, obviously, is obtainedwith value prediction and single-cycle dispatch, which sustains 3.6 IPC in theworst case (go), and 5.9 IPC in the best case (vortex) with 16-wide dispatch.Lengthening dispatch latency to two and three cycles degrades go to 3.0 and 2.8IPC, respectively, while reducing vortex to 5.8 and 5.6 IPC. Value and depend-ence prediction improve performance signi�cantly over the baseline in all cases,and wider dispatch harvests even greater additional IPC, restoring incentive forbuilding wide-dispatch processors.We see that with dependence and value prediction, virtually all of the per-formance penalty associated with pipelined dispatch has been eliminated, al-lowing even three-cycle dispatch to nearly match the performance of single-cycledispatch. Even the worst case benchmark (go) only degrades by 17% from single-cycle to two-cycle dispatch, while the best case (vortex) degrades by only 2% fortwo-cycle dispatch and 4% for three-cycle dispatch. Furthermore, three-cycle dis-



patch with value and dependence prediction can usually at least match, and fre-quently clearly outperform (compress, vortex, m88ksim, li), single-cycle dispatchwithout value or dependence prediction.6 ConclusionsWe make three major contributions in this paper. First of all, we propose apipelined dispatch structure that eases the implementation of wide-dispatch mi-croarchitectures. Second, we propose dependence prediction, a speculative tech-nique for alleviating the performance penalty of multi-cycle pipelined dispatch.Third, we propose source operand value prediction, which is a modi�ed approachto value prediction that decouples instruction execution from dependence check-ing by predicting source operands rather than destination operands. We showthat these techniques can speculate beyond data-
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