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Figure 9-6 SPECFP95 Superspeculation with Restricted Machine Modélhe sustained
IPC for a dispatch width of 16 and various instruction window sizes is shown for single-cycle dispaich
(D1), 2-cycle pipelined dispatch (D2), and 3-cycle pipelined dispatch (D3), all with and vatiprrspec-
ulation (+SS). Results for thenrestrictedmodel are also included for reference.

out superspeculatiomre summarized in Table 10-1, and show sugierspeculatioiis a robust, promising approach
that delivers significant performance increases across a broad spectrum of benchmarks and machine models.

Table 10-1: Harmonic Mean Speedup Summary

Model Width [ pisplat1 | Displat2 | Displat3 | Displat1l | Displat2 | Disp lat3
Unrestricted 64 1.58 2.04 2.96 1.19 1.40 1.61
Perfect 64 1.65 2.62 2.7p 1.11 1.27 1.39
Restricted 16 1.4( 1.80 2.0 1.17 1.89 1.59
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Figure 9-5 SPECInt95 Superspeculation with Restricted Machine Modethe sustained
IPC for an dispatch width of 16 and various instruction window sizes is shown for single-cycle dispatch
(D1), 2-cycle pipelined dispatch (D2), and 3-cycle pipelined dispatch (D3), all with and vatiprrspec-
ulation (+SS). Results for thenrestrictedmodel are also included for reference.

paper. Second, we propospigelined dispatch structuhat eases the implementation of wide-dispatch microarchi-
tectures. Third, we proposiependence predictipa speculative technique for alleviating the performance penalty of
pipelined dispatch. Fourth, we propasmirce operand value predictiowhich is a modified approach ¥alue pre-

diction that decouples instruction execution from dependence checking by predicting source operands rather than
destination operands. Finally, we propose limited formeamgfer executiomndcontrol equivalence detectipand

show that these techniques, in conjunction wilueanddependence predictipaansuperspeculatbeyond control

flow, data-flow, and dependence detection bottlenecks to reach unprecedented levels of uniprocessor performance,
and can in most cases handily exceed the performance achievable via perfect branch prediction or perfect caches, par-
ticularly with pipelined dispatch. Harmonic mean speedupsuperspeculationver identical machine models with-
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Figure 9-4 SPECFP95 Performance of Superspeculation with Perfect Branchinthe
sustained IPC for various dispatch widths and perfect branching is shown for single-cycle dispatch|(D1), 2-
cycle pipelined dispatch (D2), and 3-cycle pipelined dispatch (D3), all with and wélypetspeculation
(+SS).

Furthermore, in all cases but orgc€ with single-cycle dispatchluperspeculatiorunder the restricted
model (which accounts for memory hierarchy latencies) handily outperforms the unrestricted modelswjibout
speculationwhich assumes a perfect memory system). This indicatesupatspeculatiors clearly a more promis-
ing route towards increased performance than building increasingly aggressive memory hierarchies or pursuing
instruction or data prefetching techniques.

The results for the floating-point benchmarks, shown in Figure 9-6, are less interestingupripecula-
tion achieves significant speedups on several benchntarksdty apsi swim applu), particularly with multi-cycle
dispatch, most floating-point benchmarks already perform quite well even without it. We attribute this to two factors:
control-flow in these benchmarks is relatively predictable, hence our control-speculative techniques provide little
benefit; and an abundance of program parallelism, which tends to already saturate available resources (for example,
note the significant increase in IPC obtained by increasing window sigeifgrappluandmgrid).

10.0 Conclusions

We make five major contributions in this paper. First of all, we introducevélaé dependence moder
semantically correct execution, which lays a theoretical foundation for the speculative techniques proposed in this
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Figure 9-3 SPECInt95 Performance of Superspeculation with Perfect Branchinghe
sustained IPC for various dispatch widths and perfect branching is shown for single-cycle dispatch|(D1), 2-
cycle pipelined dispatch (D2), and 3-cycle pipelined dispatch (D3), all with and wélypetspeculation
(+SS).

Figure 9-5 summarizes the performancesaperspeculatiorunder therestricted machine model for the
integer benchmarks. There are two obvious trends. First of all, as with the unrestricted model, superspeculation is
rather insensitive to multi-cycle dispatch; nearly all of the performance of single-cycle dispatch (D1+SS) can be
obtained even with three-cycle dispatch (D3+SS). This is in stark contrast to the sharp reductions in performance that
multi-cycle dispatch causes withatperspeculatiofD1 vs. D3). Seconduperspeculatiois able to achieve most
of its available performance even with a relatively small instruction window. Having a larger instruction window
(128 or 256) does improve performance, but only marginally. This is encouraging, since next-generation micropro-
cessors already have instruction windows of size close to or greater than 64 (e.g. HP PA-8200 [Per96], DEC Alpha
AXP 21264 [Kel96]).
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Figure 9-2 SPECFP95 Performance of Superspeculationhe sustained IPC for various dis-
patch widths is shown for single-cycle dispatch (D1), 2-cycle pipelined dispatch (D2), and 3-cycle fipe-
lined dispatch (D3), all with and withostiperspeculatioif+SS).

even when the effects of branch mispredictions are completely eliminated. Furthermore, by comparing Figure 9-1
with Figure 9-3, we see thatiperspeculationvith an imperfect branch predictor consistently outperforms conven-
tional issuing with a perfect branch predictor, even with single-cycle dispatch. With multi-cycle dispptispec-

ulation handily outperforms perfect branching, indicating twggerspeculatiois clearly a more promising route and
provides more leverage towards increased performance than building ever-more-accurate branch predictors, particu-
larly since branch predictors are already highly optimized. The only two exceptions to this treopol@aaadmgrid,

which are almost completely insensitive to dispatch latency with a perfect branch predictor. However, we suspect this
behavior will break down quickly with any deviation from perfect branch prediction, since even with the very low
branch misprediction rates shown for these benchmarks in Table 4-1, they show significant sensitivity to dispatch
latency in Figure 9-2

9.3 Restricted Model

Finally, we want to examine the performancewpberspeculatiomvith a more realistic machine model. We
include three additional structural limitations into our model: latencies due to the memory hierarchy, overall instruc-
tion window size, and completion bandwidth. These parameters are summarizes in Table 4-Jdsirithed
machine model.
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ipe-

point benchmarks. Naturally, in the presence of a perfect branch predictor, Bagedexecutiomill provide no
benefit. However, we see ttdgpendence predictiqi-DP), source operanalue prediction(+VP), and limiteccon-

trol equivalence detectiof CE) combine to provide significant performance increases, taking us to 10 sustained IPC
and beyond for all but two of the integer benchmavkstéxonly reaches 7.5 IPC, whitgo reaches 14.0 IPC with

single-cycle dispatch, but drops to 8.2 with three-cycle dispatch).

For the floating-point benchmarks, performance improves significantly for three of them with perfect branch

prediction {pppp tomcaty andapsi, while for the other threesim apply, andmgrid), perfect branch prediction

primarily ameliorates the performance penalty of multi-cycle dispatch, and narrows the gap between conventional

issuing andsuperspeculatian

In summary, we have shown ttatperspeculatiorcontinues to provide significant performance increases,
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We see the beneficial effects of this interaction in Figure 8-3. Two excellent examples of this behaeimpaees
andvortex which both derive virtually no benefit from +EE+CE without value prediction (see Figure 8-1 and Figure
8-2), but do derive significant benefit from it in conjunction with value predictiorcdfopresssingle-cycle asymp-

totic IPC jumps from 5.2 with just value prediction to 6.2 when +EE+CE are added, whilertiex single-cycle
asymptotic IPC jumps from 6.2 with just value prediction to 6.9 when +EE+CE are added.

9.0 Putting It All Together: Superspeculation

The combination of these four techniqudspendence predictioftDP), source operandalue prediction
(+VP), limitedeager executio(+EE), and limitecdtontrol equivalence detectigrCE)--leads to a microarchitectural
paradigm we loosely tersuperspeculatiorf+SS). In this paradigm, we attempt to break through restrictions that
were previously assumed to be hard limits by exploitingwkek dependence model aggressively speculate
beyond them. We do so by taking advantage of value locality in the data flow of a program (to do value prediction) as
well as the control logic of the processor (to do dependence prediction). We also find the performance benefits of each
of the techniques proposed to be mutually synergistic (i.e. they tend to be magnified in the presence of the others). We
collect performance results for three different machine modafgerspeculatiomvith infinite execution resources
and a realistic branch predictanfestricted, superspeculatiomwith infinite execution resources and a perfect branch
predictor perfec), andsuperspeculatiorwith a finite instruction window and memory hierarchy with a realistic
branch predictorréstricted. The parameters for these machine models are summarized in Table 4-3.

9.1 Unrestricted Machine Model

Theunrestrictedmachine model is similar to the one used in the previous sections, but combines all four of
the superspeculativéechniques to maximize sustainable IPC. In Figure 9-1 and Figure 9-2 we show the effect of
superspeculatiorior various dispatch widths and dispatch latencies for the integer and floating-point benchmarks.
The best possible performance is obtained with single-cycle dispatcsupacspeculationwhere the asymptotic
IPC for the integer benchmarks is 8.6 in the best ¢a88Ksim and 5.2 in the worst casgd). However, in all cases,
the asymptotic IPC for even three-cycle dispatch wiiherspeculatioexceeds that of single-cycle dispatch without
superspeculatignand is only slightly worse than single-cycle dispatch sitherspeculatiomin many casescom-
press m88ksimli, ijpeg, vortex).

For the floating-point benchmarks, asymptotic IPC levels off around pdpp around 10 foapsi and
around 6 fotomcatv For the other three benchmarkpglu swim andmgrid), performance does not appear to be
leveling off, even at 64-wide dispatch. As with the integer benchmsukg&rspeculatiorior even three-cycle dis-
patch always outperforms the baseline model’'s conventional issuing policy. However, the margins are less significant
in many cases.

In summary, we have shovauperspeculatiorto be a microarchitectural approach that not only provides
significant performance increases in the presence of imperfect branch prediction (frequently 200%-300% faster than
the baseline), but one that is also relatively insensitive to deeper pipelining, hence greatly facilitating the implementa-
tion of very-wide-dispatch and deeply-pipelined superscalars.

9.2 Perfect Machine Model

In anticipation of future improvements in branch predictor technology, and to further explore the perfor-
mance potential ofuperspeculationwe simulatesuperspeculatiotin conjunction with a perfect fetch and branch
predictor. Results for theerfectmachine model are shown in Figure 9-3 and Figure 9-4 for the integer and floating-
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Figure 8-3 Cumulative Effect of +EE+CE and Value PredictionThe sustained IPC for
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cycle pipelined dispatch (D3), all with and without both +EE+CE and value prediction (+VP+EE+CEH

d 3
).

without +EE+CE n88ksimgcg ijpeg).

Our limited scheme focontrol equivalence detectianteracts in an interesting way with source operand

value predictionSincecontrol equivalence detectiantroduces the potential of multiple definitions reaching a single

dependent use at control flow joins (i.e. the targets of the short forward branches), the hardware must speculatively

choose (through branch prediction) one or the other reaching definition to satisfy the dependent use. However, this

choice cannot be verified as correct until the conditional branch is resolved. In effect, this increases the result latency

of the defining instruction to match that of the conditional branch. Fortunately, source opEtengredictionin

conjunction with theveak dependence model able to remedy this situation. In cases where the source operand

value has been predicted, the only dependsethat is delayed until after the conditional branch resolves is the value

comparison that verifies the predicted value. Hence, subsequent dependent instructions are free to issue and execute.
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Figure 8-2 Cumulative Effect of +EE+CE and Dependence Predictiofhe sustained
IPC for various dispatch widths is shown for single-cycle dispatch (D1) with and without +EE+CE, 2-cycle
pipelined dispatch (D2) with and without both +EE+CE and dependence prediction (+DP+EE+CE), and 3-
cycle pipelined dispatch (D3) with and without both +EE+CE and dependence prediction (+DP+EER+CE).

cases ompressandvortey, limited eager executiomandcontrol equivalence detectigrovide virtually no perfor-
mance gain at all. Also, in all cases, increasing the dispatch latency tends to reduce the magnitude of the speedup
obtained with limiteceager executiomndcontrol equivalence detectiorlowever, an encouraging trend shows up
with m88ksimgcg andijpeg; namely, that noticeable improvements in IPC are available beyond dispatch widths of
16 and even 32.

Further good news, however, shows up when we combine +EE+CHI@pmdence predictiomhese
results are shown in Figure 8-2, where we see that much of the performance penalty associated with pipelined dis-
patch can be eliminated even in conjunction with +EE+CE, allowing two- and three-cycle dispatch to come much
closer to the performance of single-cycle dispatch with +EE+CE, and occasionally even beating single-cycle dispatch
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Figure 8-1 Effect of Limited Eager Execution (+EE) and Control Equivalence Deteg
tion (+CE). The sustained IPC for various dispatch widths is shown for single-cycle dispatch (D1}, 2-
cycle pipelined dispatch (D2), and 3-cycle pipelined dispatch (D3), all with and without +EE+CE.

is predicted taken, instructions between the branch and its target are prohibited from writing dependence information
into the DRB or MF structures (just as in the +EE scheme described in Section 8.1). Once dispatch reaches the branch
target, this prohibition is no longer in effect, and instructions are dispatched as usual. If the short forward branch that
bypassed these instructions is later determined to have been mispredicted, the MF is restored, as always, from the
branch recovery stack, and dispatch proceeds as usual for all subsequent instructions. However, since they may have
already executed, their results will be immediately available in the value silo, resulting in a significantly reduced
branch misprediction penalty.

In Figure 8-1 we show the effect of limitegger executiomndcontrol equivalence detectiam IPC for
various dispatch widths and dispatch latencies for the eight integer benchmarks. The best performance, obviously, is
obtained with single-cycle dispatch, where asymptotic IPC jumps from 4.2 to 6.8 in the beipeg)sén(the worst
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These results are shown in Figure 7-3, where we see that virtually all of the performance penalty associated with
pipelined dispatch has been eliminated, allowing even three-cycle dispatch to nearly match the performance of sin-
gle-cycle dispatch. Even the worst case benchngokdnly degrades by 17% from single-cycle to two-cycle dis-
patch, while the best caseo(teX degrades by only 2% for two-cycle dispatch and 4% for three-cycle dispatch.
Furthermore, three-cycle dispatch withlue anddependence predictiotan usually at least match, and frequently
clearly outperformdompressvortex m88ksimli), single-cycle dispatch withouwalueor dependence prediction

8.0 Limited Eager Execution and Control Equivalence Detection

To further enhance the performance of wide-dispatch superscalars, we propose two additional techniques
that exploit theveak dependence modsi relaxing the issue constraints that control dependences impose on conven-
tional processors. These techniquediariéed eager executioftEE), which seeks to alleviate the branch mispredic-
tion penalty, andimited control equivalence detectighCE), which exploits control-flow equivalence between the
sites and targets of short conditional branches to expose additional instruction-level parallelism.

8.1 Limited Eager Execution

Eager execution has been proposed as one remedy for the branch misprediction penalty. By executing all
paths, and then selecting the correct outcome once conditional branches resolve, the latency penalty of misprediction
can be eliminated. However, this occurs at tremendous hardware costs, since the number of paths to be executed can
grow exponentially. Recent work on Disjoint Eager Execution (DEE) attempts to remedy this problem by pruning the
number of paths based on cumulative branch probabilities [US95]. In this paper, we propose a very limited form of
eager execution that exploits instruction fetch and dispatch bandwidth that has already been consumed by instructions
on the non-predicted path. In limitedger executiothereafter referred to as +EE), we simply allow instructions that
follow a predicted-taken branch within a fetch group to dispatch speculatively up to the next taken or predicted-taken
branch or the end of the fetch group, whichever occurs first. By doing so, we may avoid the cost of eventually re-exe-
cuting these instructions if the branch ends up being not-taken (i.e. mispredicted as taken). Naturally, we also impact
usage of other structural resources, but since we are measuring the potential performance of this approach, we ignore
that effect for now. The impact on our dispatch logic is minimal, and we avoid the “hardware explosion” usually asso-
ciated with eager execution. Instructions dispatched on a non-predicted path are simply prohibited from writing their
dependence information into the DRB or MF structures described in Section 5. If the branch that bypassed these
instructions is later determined to have been mispredicted, the MF is restored, as always, from the branch recovery
stack, and dispatch proceeds as usual for these instructions. However, since they may have already executed, their
results will be immediately available in the value silo, often resulting in a reduced branch misprediction penalty.

8.2 Limited Control Equivalence Detection

Exploiting control equivalence has been shown to be very important to sustaining high IPC in a number of
theoretical studies (e.g. [LW92]). However, dynamically detecting and exploiting control equivalence in the general
case can be very difficult and lead to complex hardware (one possible implementation is discussed in [US95]). Rather
than attacking the general case, we propose a simple, limited approach calledclimitedequivalence detection
(+CE) that captures dynamic control equivalence between the site and target of short forward branches within a fetch
group (note that this is not full control equivalence in the strict static sense, but only within our limited dynamic
instruction window). This is a simple extension to the liméagder executioscheme described in Section 8.1. When
the dispatch hardware detects a short forward branch, it continues dispatching subsequent instructions. If the branch
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Figure 7-3 Cumulative Effect of Value and Dependence Predictiofihe sustained IPC fo
various dispatch widths is shown for single-cycle dispatch (D1) with and without value prediction (+YP), 2-
cycle pipelined dispatch (D2) with and without both dependence and value prediction (+DP+VP), apd 3-

cycle pipelined dispatch (D3) with and without both dependence and value prediction (+DP+VP).

In Figure 7-2 we show the effect @dlue predictioron IPC for various dispatch widths and dispatch laten-
cies for the eight integer benchmarks. The best performance, obviously, is obtaineslwetpredictiorand single-
cycle dispatch, which levels off around a dispatch width of sixteen to 3.7 IPC in the worgi@taaad 6.2 IPC in
the best casevgrte®y. Lengthening dispatch to two and three cycles degmgolés asymptotic IPC of 2.6 and 2.0,
respectively, while reducingn88ksim(which is now the best performer) to 4.5 and 3.4 IN&lue prediction
improves performance significantly in all cases over the baseline cases without value prediction, and the knees of the
curves shifts further to the right. Also, fijpeg, value prediction is able to overcome nearly all of the performance
penalty of pipelined dispatch.

The real good news, however, shows up when we comailue predictionwith dependence prediction
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for
with
iction

the

number of unpredictable source operands that were identified as such by the CT and the total number of unpre-

dictable source operands. Thependence prediction hit raigolumn five) is included to show the interaction

betweenvalue predictionand dependence predictioWhen both types of prediction are used, operands that are
deemed unpredictable by the CT are relegatetkp@ndence predictiom/e see that thdependence predictiomit
rates are better across the board than the ones shown in Table 6-1, indicating that the techniques are mutually syner-

gistic. We also note that tlvalue localitynumbers are similar to those reported earlier [LS96], while the CT hit rates

are somewhat better. The former is not surprising, since source operands should be no more or less predictable than

destination operands, while we attribute the latter improvement tgstierelike CT lookup index used in these

experiments.
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value predictioralso uses a direct-mapped classification table (CT) similar to the one proposed in [LS96] for classify-
ing the predictability of source operands and deciding whether or not the operands should be predicted. In our exper-
iments, the CT is direct-mapped, has 8K entries with a 2-bit saturating counter at each entry, and is indexed by
hashing together the instruction address bitsgsharebranch predictor’s branch history register (BHR), and the rel-

ative position of the operand being looked up. As wé&hendence predictipsome initial experiments which are not
reported in detail in this paper indicate that the classification hit rates improve noticeably when \gshaseli&e

lookup index. Hence, we use the gshare-like lookup index in all experiments reported herein.

Table 7-1: Source Operand Value Prediction Results

Bench Value C.T CT Depe’?d?”ce
mark Locality Prgdlctable Unpr'edlctable Prgdlctlon
Hit Rate Hit Rate Hit Rate

go 45.3% 77.0% 83.7% 42.1%
m88ksim 56.1% 92.89 89.6% 89.6%
gcc 40.9% 78.0% 89.6% 63.0%
compress 42.4% 97.5% 98.8po 94.6%
li 33.7% 76.9% 92.99 75.4%
iipeg 35.2% 91.6% 95.9% 81.2%
perl 44.5% 76.4% 84.3% 54.4%
vortex 32.9% 83.3% 93.9% 82.5%
applu 25.5% 93.99 95.9% 60.2%
apsi 35.0% 92.79 95.2% 66.2%
fpppp 26.8% 75.7% 94.7% 33.0%
mgrid 12.1% 99.5% 99.901; 70.3%
swim 19.8% 94.89 99.6% 89.3%
tomcatv 58.0%) 93.89 91.7% 84.8%

When all of the input operands of an instruction are classified as predictable, the instruction is permitted to
dispatch early, after the first dispatch cycle (instructions with unpredictable source operands may still end up execut-
ing sooner than without value prediction, in cases where an operand that is predicted is on a critical path). Once dis-
patch finishes and exact dependence information becomes available, the instruction waitsriiedsperands to
become available in the value silo (operands in the value silo begmifiedwhen the instructions that generate
them have validated all of their input operands) and then compares them against its predicted operands. If they match,
the result operands of the instruction are maxkedied and the instruction is allowed to complete in program order.

If they don’t match, the instruction re-executes with the correct operands. Just as in [LS96], this results in a one-cycle
misprediction penalty, since the instruction in question as well as all of its dependents do not execute with their cor-
rect inputs until one cycle later than if there had been no prediction. However, due to the lack of a global mispredic-
tion broadcast mechanism like the one used in [LS96], the one-cycle penalty can occur at every level in a dependence
chain, rather than only at the top of the dependence chain.

Table 7-1 summarizes the value locality, classification hit rates, and dependence prediction hit rates for each
of our benchmarks. Value locality (column two), as defined in [LWS96], is the ratio of the dynamic count of source
operands that are predictable with the VPT mechanism and the dynamic count of all source operpratticiitne
hit rate (column three) is the ratio of the number of predictable source operands that were identified as such by the CT
and the total number of predictable source operands. Similariynghedictable hit ratécolumn four) is the ratio of
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latencies for the eight integer benchmarks. Without dependence prediction, the best performance, obviously, is
obtained with single-cycle dispatch, which levels off at a dispatch width of sixteen to 2.8 IPC in the worgt)case (

and 4.8 IPC in the best cased8ksin. Lengthening dispatch to two and three cycles degmgaigsasymptotic IPC

of 1.7 and 1.3, respectively, while reducijgeg (which is now the best performer) to 3.7 and 2.5 IPC. Furthermore,

the knee of the dispatch-width curves has now shifted left to between four and eight, rather than sixteen, hence erod-
ing incentive for building processors with dispatch widths exceeding four, which is the width that many current-gen-
eration microprocessors implement. Fortunately, dependence prediction is able to alleviate these depressing trends by
reducing the average dispatch latency. For both two- and three-cycle dispatch, dependence prediction significantly
elevates the IPC curves and brings them much closer to the single-cycle case. Furthermore, the knee of these dis-
patch-width curves shifts back towards sixteen, restoring incentive for building wider superscalar processors. Three
benchmarkseompressli, andijpeg-behave particularly well, eliminating nearly all of the performance penalty
induced by two- and three-cycle dispatch.

7.0 Source Operand Value Prediction and Recovery

A complementary approach for reducing the adverse performance impact of pipelined dispatch involves a
variation on previous work on value prediction [LS96]. In earlier work, the destination operands (i.e. results) of
instructions were predicted via table-lookup at fetch/dispatch, and then forwarded directly to dependent instructions.
The shortcoming of this approach is that dependence relationships must be detected before values can be forwarded
to dependent instructions. To overcome this problem, we propose predicting the vaaescebperands, rather
thandestination operands, hence decoupling value-speculative instruction dispatch entirely from dependence detec-
tion. As in the earlier work, we predict only floating-point and general-purpose register operands, and not condition
registers or special-purpose registers.

Classification Table (CT) Value Prediction Table (VPT)
<v> <pred history> PCofpred.instr.  <y>  <value history>

——— 1\»_
A by A

BHR Oper. Position

Y

Predict?
-\ /

Prediction Result Predicted Value Updated Value

Figure 7-1 Source Operand Value Prediction MechanisnThe source operand posi-
tion and PC are hashed together to index the VPT, while the operand position, PC, and BHR|are
hashed together to index the CT. The prediction and value histories are updated at completio

>

Source operandalue prediction(+VP) is illustrated in Figure 7-1. As in [LS96], we use a value prediction
table (VPT) to keep track of past operand values, and exploit the value locality [LWS96] of operands to predict future
values. In our experiments, the VPT is direct-mapped, 32KB in size, and is indexed by hashing together the instruc-
tion address bits and the relative position of the operand (i.e. first, second, or third) being looked up. Source operand
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correct predictions are shown in Table 6-1. We find that for most benchmarks, the DPT achieves a respectable hit rate.
Some initial experiments, which are not reported in detail in this paper, indicated that gsimgrelike lookup

index improves the DPT hit rate considerably over using just the instruction address. Hence, wshaselike

lookup index for all the experiments reported herein. For three benchrgatkser| andfpppp-the dependence pre-

diction hit rates were rather low. This behavior can be attributed to the unpredictable branch behavior of these three
benchmarks, since unpredictable branches can lead to unpredictable dependence distances when there are multiple
definitions reaching a use. As seen in Figure 2-1 and Table 4-1gdatidperl have high BTB misprediction rates,
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while go andfpppphave high BHT misprediction rates.
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Figure 6-2 Effect of Dependence Predictiormhe sustained IPC for various dispatch widths i
shown for single-cycle dispatch (D1), 2-cycle pipelined dispatch (D2) with and without dependence
tion (+DP), and 3-cycle pipelined dispatch (D3) with and without dependence prediction (+DP).

In Figure 6-2 we show the effect of dependence prediction on IPC for various dispatch widths and dispatch
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effects, we propose a mechanism catlegpendence predictioDP) that can frequently short-circuit multi-cycle
dispatch by predicting the dependence relationships between instructions in flight and speculatively allowing instruc-
tions that argredicted to be data readg execute in parallel with exact dependence checking.

Dispatch Group
P1: |SrcDst

Dependence Prediction Table (DPT)
PC  <v> <value silo index>

3

Value
Silo

BHR
Figure 6-1 Dependence Prediction Mechanisnuring stage P1, the source operand

position, PC, and branch history register (BHR) are hashed together to index the DPT, which predicts
the value silo entry that contains the source operand. During P2, the prediction is verified.

As shown in Figure 6-1, dependence prediction is implemented with a dependence prediction table (DPT)
with 8K entries, which is direct-mapped and indexed by hashing together the instruction addressdstaréhe
branch predictor’s branch history register (BHR), and the relative position of the operand (i.e. first, second, or third)
being looked up. Each DPT entry contains a numeric value which reflects the relative index of that input operand’s
source in the value silo. This relative index is used to check the value silo to see if the operand is already available. If
all of the instruction’s predicted input operands are available, the instruction is permitted to dispatch early, after the
first dispatch cycle. In the second (or third, in the three-cycle dispatch pipeline) dispatch cycle, exact dependence
information becomes available, and the earlier prediction is verified against the actual information. In case of a mis-
match, the DPT entry is replaced with the correct relative position, and the early dispatch is cancelled.

Table 6-1: Dependence Prediction Results

Bench Operands Per Correct
mark Predicted | Instruction | Predictions
go 89.6M 1.126 38.0%
m88ksim 113.4M 1.06( 77.4%
gcc 174.2M 0.958 59.7%
compress| 40.6M 1.028 87.3%
li 49.8M 0.878 72.4%
iipeg 92.3M 1.001] 71.9%
perl 47.3M 0.944 48.2%
vortex 120.7M 0.788 71.3%
applu 53.1M 1.380Q 55.5%
apsi 215.8M 1.352 58.9%
fpppp 71.9M 1.435 32.1%
mgrid 148.5M 1.338 69.9%
swim 49.7M 1.282 87.3%
tomcatv 40.8M 0.864 77.8%

The total number of operands predicted, average number of predictions per instruction, and percentage of
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mentation, it can be partitioned by register type and even register number.

As shown in Figure 5-1, during the first pipeline stage P1 of pipelined dispatch, all instructions in a fetch
group allocatevalue siloslots for their destination operands, and then write the <register nuraher,siloslot>
mapping tuples into thedlependence-resolution buff@®RB) entries. At the same time, thalue siloslot numbers
are written into thenapping file(MF), a table indexed by the register number. If a dispatch group contains more than
one write to the same architected register, arbitration logic selects the last write before a taken or predicted-taken
branch. During the second pipeline stage P2, all instructions in a fetch group search ahead in the DRB for a register
number matching each of their input registers (the DRB is multi-ported and content-addressable). If multiple match-
ing entries are found, the closest one (i.e. the most recent definition) is selected. If no matching entry is found, the
shadow mapping fileMF’) entry for the register is used instead. MF’ summarizes the register-to-value silo mappings
for all previous fetch groups, and is a one-cycle-delayed copy of the mapping file MF. If no register-to-value-silo
mapping exists, the appropriate MF’ entry will instead point to the architected register file. At the end of P2, all the
instructions in the fetch group know where in the value silo they can find their input operands, and can check the
scoreboarded valid bits to see if they are available.

o Dispatch Group
CValue Siloy P1: [scof | [

» MF | BRS

—— Y

P2: DRB MF’

~ @

Figure 5-1 Pipelined Dispatch StructureDuring stage P1, all instructions in a fetch grouip
write destination register rename mappings into the DRB and the MF. During stage P2, the instruc-
tions search the DRB and MF’ for source register rename mappings.

Whenever a predicted branch occurs within a dispatch group, a snapshot of the mapping file MF that
includes all register writes through the branch is pushed onto a branch recovery stack (BRS). Any instruction follow-
ing a taken or predicted-taken branch within a fetch group is discarded and prevented from writing into either the
DRB or the MF. When a branch misprediction is resolved, any instructions that are newer than the branch are dis-
carded along with their value silo slots, and fetching starts over from the actual destination of the mispredicted
branch, while the MF snapshot corresponding to that branch is retrieved from the branch recovery stack.

As described here, instruction dispatch is pipelined into two stages. However, it is easy to envision even
deeper pipelining of this process. Hence, we simulate the performance effects of and present results for one-, two-,
and three-stage dispatch pipelines.

6.0 Dependence Prediction and Recovery

Figure 2-1 illustrates the detrimental performance effects of a pipelined dispatch structure. In short, a pipe-
lined dispatch structure increases the number of cycles between a branch misprediction and the detection of that
misprediction, hence aggravating the misprediction penalty and severely limiting performance. To alleviate these
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arbitrarily, while the execute stage has unlimited width. The latency of the dispatch stage can also be varied from one
to three cycles, while the latency of the execute stage is instruction-dependent and is summarized in Table 4-2. All
functional units are fully pipelined, all architected registers are dynamically renamed, and instructions are allowed to
execute out-of-order subject to the total instruction window size. However, all branches are executed in program
order, and all loads are prevented from accessing memory until the addresses of all previous stores are known. If an
alias to an earlier store exists, a forwarding mechanism exists that delays the load until the store’s data becomes avail-
able, and then forwards that value directly to the load (in effect, the processor dynamically renames memory).

Our model uses a very aggressigharebranch predictor [McF93] with a 256K entry branch history table
(BHT) with 2 bits per entry that is indexed by the exclusive-or of a 18-bit branch history register and the branch
instruction address. The branch target buffer (BTB) is direct-mapped, is not tagged, and has 1024 entries, while the
return address stack (RAS) also has 1024 entries. Fetch and branch prediction both occur detéchgtége of the
pipeline, while instructions are fetched from a dual-banked instruction cache with line size equal to the specified fetch
width (this configuration is described iaterleaved sequentiah [CMMP95]). Up to three conditional branches can
be predicted per cycle, with a simgjshareextension to the scheme described in [RBS96]. Our model also supports
a perfect branching mode, where all of these structures are assumed to be perfect, and hence introduce no delays into
program execution.

We use three basic configurations of this machine model in our simulations. Key parameters for the three
configurations are summarized in Table 4-3. Timeestrictedconfiguration is used to generate the intermediate
results presented in Section 6, Section 7, and Section 8. In Section 9, all three configuratéstseted perfect
andrestricted-are used to further explore the performance potentsupérspeculation

Table 4-3: Machine Model Configurations

Parameter Unrestricted Perfect Restricted

Branch Predictor Imperfect Perfect Imperfect

Fetch and Dispatch Width {4,8,16,32,64} {4,8,16,32,64 16
Completion Width Unrestricted Unrestricted 16

Instruction Window Infinite Infinite {64,128,256}

Instruction Cache Perfect Perfect 64K, 4-way, 64B lines

I-cache Miss Latency N/A N/A 10 CPU cycles
Data Cache Perfect Perfect] 64K, 4-way, 32B lines

D-cache Miss Latency N/A N/A 10 CPU cycles

5.0 Pipelined Dispatch Structure

In this section, we describe a pipelined dispatch structure that facilitates the implementation of wide-dis-
patch microarchitectures by reducing the circuit complexity and cycle-time demands imposed by simultaneous cross-
checking of data dependences within a large dispatch group. In this scheme, dependence checking is divided into two
pipeline stages. During the first stage, all destination registers within a dispatch group are identified and renamed, and
the rename mappings are written into dependence-resolution buff@RB) and thenapping file(MF). During the
second stage, all source registers are identified and their rename mappings are looked up in the DRBaaiwavthe
mapping file(MF’). In our microarchitecture, all register writes are renamed to slotgafua silo Thevalue silois
used to scoreboard, hold, and forward the results of instructions until they are ready to complete and write back into
the architected register file. Conceptually, viaue silois a monolithic structure, but in an actual hardware imple-
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support libraries, but does not account for supervisor-state execution. All of the benchmarks are run to completion,
albeit with reduced input sets and/or fewer iterations than in the SPEC95 reference runs.

Table 4-1: Benchmark set

e Description Input Set o I.BHT BTB RAS

mark Length | Mispred | Mispred | Mispred
go SPEC95 game 2stone9.in, 9x9, ley. 5 79pbM 12|0% 8.5% 0.0%
m88ksim SPEC95 88K simulator 100 iter . of dhrystgne 107j0M 27% 4.3% 0.0%
gce SPEC95 gcc compiler genoutpllt.i 181.8M 5.1% 8{7% 3.9%
compress SPEC95 data compression small input (J0K) 39.7M 5.9% 0.0% 0.0%
li SPEC95 lisp emulator six queens problg¢m 56.BM 3.0% 513% 12.2%
ijpeg SPECO95 jpeg encoder tinyrose.ppm 92 M 217% 0.6% 18.7%
perl SPEC95 perl interpreter train scrabbjpl 50.plM 2.4% 1111% 4.1%
vortex SPEC95 database program reduced version offtrain 193.1M 0.6% 1.6% 11.4%
applu SPEC95 PDE Solver 5 iter, 12x12x4L2 38.FM 1.8% 012% 25.5%
apsi SPEC95 Atmospheric model 10 steps, 128x¥x32 159.0M 8.0% 0.8% 9.2%
fpppp SPEC95 Quantum chemistry model 3 atoms (ref usef 30) 50.0M 10.9% 0.3% 0.8%
mgrid SPEC95 Multigrid solver 10 iterations (test has j0) 11140M 2.4% .5% 57.9%
swim SPEC95 Shallow water model 10 iter 128x328 38BM 119% 0.5% 0.4%
tomcatv SPEC95 Mesh Generation 3 iter w/ array sizp 43 41.2M 1.3% 2.4% 47.4%

Total/HM | 1,204.6M

4.2 Simulation Environment

Our simulation environment is built around the PSIM PowerPC functional emulator that is distributed as
part of the Free Software Foundation’s GDB debugger [Cag96]. This functional emulator gives us complete access to
the processor’s internal register state at each instruction boundary. This is a requirement for us, since we use value-
based dynamic prediction mechanisms to improve performance, and we need access to actual values, not just
addresses, to accurately simulate these mechanisms. Full functional emulation also gives us the ability to accurately
model the impact of mispredicted paths on internal processor structures. Currently, we only exploit this feature in a
limited fashion (i.e. only certain mispredicted paths are fully emulated), but we plan to expand the functionality of
our framework to include full simulation of all execution paths that the actual processor would exercise.

Table 4-2: Instruction Latencies

Instruction Class Issue Latency Result Latency
Integer Arithmetic and Logical 1 1
Integer Multiply 1 3
Integer Divide 1 10
Load/Store 1 1 for address, 2 for load data
FP Add/Subtract/Normalize/Negat¢g 1 3
FP Multiply/Multiply-Add 1 3
FP Divide 1 11
Branch(pred/mispred) 1 0-1

4.3 Machine Model

The machine model used in our simulations has a canonical four-stage pipétineispatch executeand
complete The width of the fetch, dispatch, and completion stages and the total instruction window size can be varied
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» Dependences can be temporarily violated during instruction execution, and

» Dependences need not be determined exactly or assumed pessimistically, but can instead be optimisti-

cally ignored or approximated.

Of course, the minimal requirement of semantic correctness must still be maintained before instructions are
allowed to modify the processor’s architected state. This can be achieved by verifying that the following conditions
are met before an instruction is allowed to complete:

» The current instruction must be the immediate successor of the most recently completed instruction in

the program'’s flow of control, and

» The current instruction must have received input values that match the current architected values, with-

out regard for how those values were generated.

Note that these conditions eliminate the need for enforcing rigid source-to-sink relationships between data-
dependent instructions and allow them to execute in parallel. It is this property that enabled the performance gains
reported in [LWS96] and [LS96]. However, this property introduces an additional and previously unexploited degree
of freedom for the microarchitect; namely, that source-to-sink data flow relationships between instructions needn'’t
even be detected before these instructions can begin execution. In effect, it pushes dependence checking and depen-
dence detection further down into the pipeline and eliminates it as an unnecessary front-end bottleneck. We use the
termsuperspeculatioto informally represent aggressive microarchitectural techniques that emplogakelepen-
dence modeib perform speculation beyond control and data dependences.

4.0 Experimental Framework

To evaluate the performance potential ofweak dependence moaeidsuperspeculationwe implement a
flexible emulation-based simulation framework for the PowerPC instruction set. Currently, the simulation framework
accurately models branch and fetch prediction, dispatch and completion width constraints, instruction window size,
latency in the memory hierarchy, and all branch misprediction and data dependence delays for realistic instruction
latencies. We intend to enhance the simulation framework to accurately model further structural resource limitations
(e.g. rename buffers, functional units, forwarding paths, memory bandwidth, etc.). However, since our intent is to
measure the performance potentiasoperspeculatiorrather than the actual performance of a fixed implementation,
we feel it is reasonable to refrain from modeling further structural constraints within the context of this paper.

4.1 Benchmarks

We selected the SPEC95 integer and floating-point benchmark suites for our study, since they are easily
available, widely used, and well-understood. We are aware that these may not be representative of commercial work-
loads [MDO94]. Table 4-1 summarizes the benchmarks and input sets used, and also shows run length (dynamic
instruction count) and BHTb¢anch history tablg BTB (branch target buffér and RAS feturn address stagk
branch misprediction rates. The BHT misprediction rate is the number of mispredicted conditional branches divided
by the total number of conditional branches, the BTB misprediction rate is the number of taken branches with mispre-
dicted targets divided by the total number of taken branches, and the RAS misprediction rate is the total number of
subroutine returns with mispredicted targets divided by the total number of subroutine returns.

The integer benchmarks are compiled for the PowerPC instruction set with GCC version 2.7.2 at full optimi-
zation, while the floating-point benchmarks are compiled for the PowerPC instruction set with G77 version 0.5.18,
also at full optimization (we only use six out of ten SPECFP95 benchmarks due to time and space constraints). The
emulation environment captures the behavior of all user-state instructions, including those in the NetBSD runtime
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weak dependence model

3.0 The Strong and Weak Dependence Models

To satisfy thesequential execution modeherent in most instruction set architectures, any implementation
of an architecture must maintain an in-order architectural state as if the instructions in an instruction stream were
being executed sequentially without any overlap. This model is useful, and necessary in almost any computing sys-
tem, because it enables a thread of control to be interrupted and later restarted at any instruction boundary (i.e. it
enables precise exceptions). Specifically, all implementations must ensure that two conditions are met before an
instruction is allowed to complete according to the sequential execution model:

* instructions must complete in the original program order (control-flow correctness), and

» instructions must produce semantically correct results (data-flow correctness).

That is, based on the in-order processor state that exists before the current instruction, the implementation
must ensure that the current instruction is indeed the next one in the flow of control, and also that the current instruc-
tion has received the correct operands in the program’s data flow. Current microprocessors expend significant
amounts of hardware to ensure that both of these conditions are met throughout the lifetime of an instruction being
executed. That is, there is an in-order front end that fetches and decodes instructions in order to determine control and
data dependences, an out-of-order execution core that tolerates varying latencies but still rigorously or strongly
enforces control and data dependences, and an in-order back end that completes instructions in program order once
all dependences have been resolved and execution has finished.

The major shortcoming of this approach is that it is overly rigorous in enforcing both of the above condi-
tions, and hence unnecessarily restricts available parallelism. When enforcing control flow correctness, modern pro-
cessors discard all subsequent instructions when a fetch or branch misprediction is detected, and refetch from the new
branch destination. All subsequent instructions already in flight are discarded due to the perceived difficulty of detect-
ing which ones were useful and/or received correct data operands. However, doing so discards potentially large num-
bers of useful instructions, whenever control equivalence exists between basic blocks. Theoretical studies (e.g.
[LW92]) have found the performance impact of this approach to be significant. Furthermore, when enforcing data
flow correctness, modern processors detect and enforce rigid source-to-sink data-flow relationships before instruction
execution is allowed to begin, which is more than the sequential execution model requires.

We classify such traditional and conservative processors as adheringstmitgedependence moddhe
strong dependence mogdahalogous to thstrong orderingof memory references [DSB86], requires that all control
and data dependences between instruction pairs--whether real or perceived--impose a serial ordering on the execution
of the dependent instructions. In fact, at its most extreme, the strong dependence model requires that:

» All dependences must be adhered to throughout the execution of an instruction, and

» All dependences must be determined in an exact fashion (or, when in doubt, dependences are pessimis-
tically assumed to exist).

Ad hoc attempts to relax the serialization requirements dadttbag dependence modeve appeared spo-
radically as modern computer architecture has evolved. For example, techniqugsetiblative disambiguation
[HSS94, GCM94] can temporarily violate data dependences before those dependences are known. Similarly, branch
prediction enables speculative execution of instructions beyond conditional branches, hence violating control depen-
dences temporarily, until the branches resolve. However, conventional single-path speculative execution also induces
false control dependences, by assuming that all instructions following a conditional branch are control dependent on
the branch. These are false control dependences, just as antidependences (WAR) and output dependences (WAW) are
false data dependences [Joh91].

In order to circumscribe these and other aggressively speculative techniques, we propesd thepen-
dence modelhich specifies that:
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detected until a potentially large number of preceding branches have resolved. This complicates the implementation
and reduces the benefit of multiple-path (eager) execution [US95]. Furthermore, wide (i.e. greater than four) dispatch
is difficult to implement and has adverse impact on cycle time because all instructions in a dispatch group must be
simultaneously cross-checked. Even current microprocessor implementations with dispatch windows of four or less
(e.g. Alpha AXP 21164 [BK95], Pentium Pro [CS95]) require multiple instruction decode and dependence-checking
pipeline stages.

1.0
RAS Mispred i
BTB Mispred
BHT Mispred

0.8 Other N

0.6

0.4

Cycles Per Instruction (CPI)

0.2

0.0

go m88ksim gcc compress i ijpeg perl  vortex

Figure 2-1 Branch Misprediction Penalty.The approximate contribution of RAS, BTB,
and BHT mispredictions to overall CPI is shown for single-cycle dispatch (left bar), 2-cycle pipe-
lined dispatch (middle bar), and 3-cycle pipelined dispatch (right bar).

One obvious solution to the problem of the complexity of dependence detection is to pipeline it into two or
more stages to minimize impact on cycle time. In Section 5 we propose a pipelined approach to dependence detection
that facilitates the implementation of wide-dispatch microarchitectures. However, pipelined dependence checking
aggravates the cost of branch mispredictions by delaying resolution of mispredicted branches. In Figure 2-1, we see
the IPC impact of pipelining dependence checking on a 16-dispatch machine with an advanced branch predictor and
no other structural resource limitations (refer to Section 4.1 and Section 4.3 for further details on the benchmarks and
machine model). We see that lengthening dispatch to two or three pipeline stages (vs. the baseline case of one)
severely increases the number of cycles during which no useful instructions are dispatched and increases CPI
(decreases IPC) dramatically, to the point where sustaining even 2-3 IPC becomes very difficult.

We propose to alleviate these problems in two ways: by introducing a scalable, pipelined, and speculative
approach to dependence detection calieggendence predicticemd also by exploiting a modified approacivatue
prediction[LS96]. Fundamental to these is the notion that maintaining semantic correctness does not require that we
rigorously enforce source-to-sink data-flow relationships or that we even exactly detect these relationships before we
start executing. Rather, we use dynamically adaptive techniques for predicting values as well as dependences and
speculatively issue instructions early, before their dependences are resolved or even known. In fact, we are exploiting
a more relaxed enforcement of control and data dependences without violating semantic correctness. We call this the
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Approaching 10 IPC via Superspeculation

1.0 Motivation and Related Work

Recently, some attention has been focused on the microarchitectural challenges involved in bredBing the
IPC barrier (i.e. sustaining 10 instructions per cycle) [Pat96]. Fundamentally, there are two restrictions that limit the
degree ofPC that can be achieved with sequential programostrol flowanddata flow Control flowlimits IPC by
imposing serialization constraints at forks and joins in a program’s control flow graph [A®a&6Flowlimits IPC
by imposing serialization constraints on pairs of instructions that are data dependent. Examining the extent and effect
of these limits has been a popular and important area of research, particularly in the case of control flow
[RF72,Wal91,LW92]. Continuing advances in the development of accurate branch predictors (e.g. [YP91]) have led
to aggressive control-speculative microarchitectures (e.g. the Intel Pentium Pro [CS95]), which undertake aggressive
measures to overcome control-flow restrictions by using branch prediction and speculative execution to bypass con-
trol dependences and expose additional instruction-level parallelism to the microarchitecture. Meanwhile, numerous
mechanisms have been proposed and implemented to eliminate false data dependences and tolerate the latencies
induced by true data dependences by allowing instructions to execute out of program order [Joh91].

Surprisingly, in light of the extensive energies focused on eliminating control-flow restrictions on parallel
instruction issue, less attention has been paid to eliminating data-flow restrictions on parallel issue. Recent work has
focused primarily on reducing the latency of specific types of instructions (usually loads from memory) by rearrang-
ing pipeline stages [Jou88], initiating memory accesses earlier [AS95], or speculating that dependences to earlier
stores do not exist [HSS94, GCBA].

In [LWS96], Lipasti et al. introduce the notion wdlue locality-defined as the recurrence of previously-
seen values--and demonstrate a technijoad Value Predictionor LVP--for predicting the results of load instruc-
tions at dispatch by exploiting the affinity between load instruction addresses and the values the loads produce. In
[LS96], they extend the LVP approach for predicting the results of load instructions to generalized value prediction
for all instructions that write an integer or floating-point register and show that a significant proportion of such writes
are trivially predictable. In the same vein, we propose exploige localitynot only in the data-flow portion of a
microarchitecture, but also in the control logic. We find that the dependence relationships between dynamic instruc-
tions contain a great deal of value locality, and propose a mechateperdence predictiefior capturing and
exploiting this value locality to allow early dispatch of instructions in wide-dispatch machines. Furthermore, we find
that combining botlvalueanddependence predictiomith limited forms ofeager executioandcontrol equivalence
detectionleads to significant performance increases, with harmonic mean speedups ranging, depending on machine
model, from 40% to 176% for integer programs and 11% to 61% for floating-point programs.

2.0 Detecting Control and Data Dependences

Detecting control and data dependences among multiple instructions in flight is an inherently sequential task
that becomes very expensive combinatorially as the number of concurrent in-flight instructions increases. Olukotun et
al. argue convincingly against wide-dispatch superscalars because of this very fac@gDNeanwhile, studies
have shown that to achieve hifC (sustained instructions per cycle), the number of in-flight instructions must be
very large (e.g. [AS92]). Unfortunately, such studies have largely ignored the complexity of pair-wise dependence
checking between instructions in flight. Dependence checking is further complicated by the presence of control-flow
joins. Whenever multiple definitions reach a control-flow join, a data dependence relationship cannot even be
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Abstract

Until recently, the serialization constraints induced by true data dependences have been
regarded as an absolute limit--the data-flow limit--on the parallel execution of serial pro-
grams. Likewise, the exact detection and enforcement of these dependences has been assumed
to be a requirement for semantically correct execution. This paper introduces theeak depen-
dence model, which relaxes these restrictions without violating program correctness, and pro-
poses a new microarchitectural paradigm calledsuperspeculation that exploits this new
dependence model to achieve uniprocessor IPC approaching t&uperspeculation consists of

a set of control- and data-speculative technigues that can be used to relax the serialization
constraints induced by true dependences to allow instructions to issue and execute before
their control or data-flow dependences are resolved or even detected. We find that depen-
dence relationships between instructions are easily predictable, and that source operand val-
ues are frequently predictable as well. These discoveries minimize the IPC penalty of deeper
pipelining of instruction decode and dispatch and enable relatively simple implementations of
limited forms of eager execution and control equivalence detection that result in average inte-
ger program speedups ranging from 40% to 176% (harmonic mean), depending on machine
model.

KEYWORDS: Microarchitecture, superscalar processors, speculative execution, value prediction, eager
execution, control equivalence detection



