
Page 25 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

References

[AS92] Todd M. Austin and Gurindar S. Sohi. Dynamic dependency analysis of ordinary programs. InProceedings of the 19th
International Symposium on Computer Architecture, pages 342–351, 1992.

[AS95] Todd M. Austin and Gurindar S. Sohi. Zero-cycle loads: Microarchitecture support for reducing load latency. InPro-
ceedings of the 28th Annual ACM/IEEE International Symposium on Microarchitecture, pages 82–92, December 1995.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman.Compilers principles, techniques, and tools. Addison-Wesley, Reading, MA,
1986.

[BK95] Peter Bannon and Jim Keller. Internal architecture of Alpha 21164 microprocessor.COMPCON 95, 1995.
[Cag96] Andrew Cagney. PSIM User Guide. Available as ftp://cambridge.cygnus.com/pub/psim/index.html, August 1996.
[CMMP95] Thomas M. Conte, Kishore N. Menezes, Patrick M. Mills, and Burzin A. Patel. Optimization of instruction fetch mech-

anisms for high issue rates. InProceedings of the 22nd Annual International Symposium on Computer Architecture,
pages 333–344, Santa Margherita Ligure, Italy, June 22–24, 1995.

[CS95] Robert P. Colwell and R. Steck. A 0.6um BiCMOS process with Dynamic Eexecution. InProceedings of ISSCC, 1995.
[DSB86] M. Dubois, C. Scheurich, and F.A. Briggs. Memory access buffering in multiprocessors. InProceedings of the 13th

International Symposium on Computer Architecture, pages 434–443, June 1986.

[GCM+94] David M. Gallagher, William Y. Chen, Scott A. Mahlke, John C. Gyllenhaal, and Wen mei W. Hwu. Dynamic mem-
ory disambiguation using the memory conflict buffer. InProceedings of the Sixth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 183–193, San Jose, California, October
4–7, 1994.

[HSS94] Andrew S. Huang, Gert Slavenburg, and John P. Shen. Speculative disambiguation: A compilation technique for dy-
namic memory disambiguation. InProceedings of the 21st International Symposium on Computer Architecture, pages
200–210, Chicago, IL, April 1994.

[Joh91] M. Johnson.Superscalar Microprocessor Design. Prentice Hall, Englewood Cliffs, NJ, 1991.
[Jou88] N. P. Jouppi. Architectural and organizational tradeoffs in the design of the MultiTitan CPU. Technical Report TN-8,

DEC-wrl, December 1988.
[Kel96] Jim Keller. The 21264: A superscalar Alpha microprocessor with out-of-order execution. InProceedings of the Micro-

processor Forum, October 1996.
[LS96] Mikko H. Lipasti and John Paul Shen. Exceeding the dataflow limit via value prediction. InProceedings of the 29th

Annual ACM/IEEE International Symposium on Microarchitecture, December 1996.
[LW92] M.S. Lam and R.P. Wilson. Limits of control flow on parallelism. InProceedings of the 19th International Symposium

on Computer Architecture, pages 46–57, 1992.
[LWS96] Mikko H. Lipasti, Christopher B. Wilkerson, and John P. Shen. Value locality and load value prediction. InProceed-

ings of the Seventh International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VII), October 1996.

[McF93] Scott McFarling. Combining branch predictors. Technical report, Digital Equipment Corp, June 1993.
[MDO94] Ann Marie Grizzaffi Maynard, Colette M. Donnelly, and Bret R. Olszewski. Contrasting characteristics and cache per-

formance of technical and multi-user commercial workloads. InSixth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 145–156, San Jose, October 1994.

[ONH+96] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang. The case for a single-chip
multiprocessor. InProceedings of the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII), October 1996.

[Pat96] Yale N. Patt. A 10 IPC microprocessor, the next challenge. ICCD ’96 Tutorial, October 1996.
[Per96] Paul Perez. The PA-8200: A high-performance follow-on to the PA-8000. InProceedings of the Microprocessor Fo-

rum, October 1996.
[RBS96] Eric Rotenberg, Steve Bennett, and Jim Smith. Trace cache: a low latency approach to high bandwidth instruction

fetching. InProceedings of the 29th Annual ACM/IEEE International Symposium on Microarchitecture, December
1996.

[RF72] Edward M. Riseman and Caxton C. Foster. The inhibition of potential parallelism by conditional jumps.IEEE Trans-
actions on Computers, pages 1405–1411, December 1972.

[US95] Augustus K. Uht and Vijay Sindagi. Disjoint eager execution: An optimal form of speculative execution. InProceed-
ings of the 28th Annual ACM/IEEE International Symposium on Microarchitecture, 1995.

[Wal91] D.W. Wall. Limits of instruction-level parallelism. InFourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 176–188, Santa Clara, CA, 1991.

[YP91] T. Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. InProceedings of the 24th Annual Interna-
tional Symposium on Microarchitecture, pages 51–61, November 1991.

Page 24 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

out superspeculation are summarized in Table 10-1, and show thatsuperspeculation is a robust, promising approach

that delivers significant performance increases across a broad spectrum of benchmarks and machine models.

Acknowledgments

This work was supported in part by ONR grant N00014-96-1-0928. We gratefully acknowledge the generos-

ity of the Intel Corporation for donating numerous fast Pentium Pro-based workstations for our use. We also wish to

thank the authors of the PSIM functional emulator for their generosity in making this tool publicly available.

Figure 9-6 SPECFP95 Superspeculation with Restricted Machine Model. The sustained

IPC for a dispatch width of 16 and various instruction window sizes is shown for single-cycle dispatch

(D1), 2-cycle pipelined dispatch (D2), and 3-cycle pipelined dispatch (D3), all with and withoutsuperspec-

ulation (+SS). Results for theunrestricted model are also included for reference.

Table 10-1: Harmonic Mean Speedup Summary

Machine
Model

Dispatch
 Width

SPECInt ‘95 SPECFP ‘95

Disp lat 1 Disp lat 2 Disp lat 3 Disp lat 1 Disp lat 2 Disp lat 3

Unrestricted 64 1.58 2.04 2.66 1.19 1.40 1.61

Perfect 64 1.65 2.62 2.76 1.11 1.27 1.39

Restricted 16 1.40 1.80 2.20 1.17 1.39 1.59

64 128 256 Unrestricted
Instruction Window Size

0.0

5.0

10.0

IP
C

applu

64 128 256 Unrestricted
0.0

5.0

10.0

IP
C

apsi

64 128 256 Unrestricted
0.0

5.0

10.0

IP
C

fpppp

64 128 256 Unrestricted
Instruction Window Size

0.0

5.0

10.0

IP
C

mgrid

64 128 256 Unrestricted
0.0

5.0

10.0

IP
C

swim

64 128 256 Unrestricted
0.0

5.0

10.0

IP
C

tomcatv
D1
D1+SS
D2
D2+SS
D3
D3+SS

Page 23 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

paper. Second, we propose apipelined dispatch structure that eases the implementation of wide-dispatch microarchi-

tectures. Third, we proposedependence prediction, a speculative technique for alleviating the performance penalty of

pipelined dispatch. Fourth, we proposesource operand value prediction, which is a modified approach tovalue pre-

diction that decouples instruction execution from dependence checking by predicting source operands rather than

destination operands. Finally, we propose limited forms ofeager execution andcontrol equivalence detection, and

show that these techniques, in conjunction withvalue anddependence prediction, cansuperspeculate beyond control

flow, data-flow, and dependence detection bottlenecks to reach unprecedented levels of uniprocessor performance,

and can in most cases handily exceed the performance achievable via perfect branch prediction or perfect caches, par-

ticularly with pipelined dispatch. Harmonic mean speedups forsuperspeculation over identical machine models with-

Figure 9-5 SPECInt95 Superspeculation with Restricted Machine Model. The sustained

IPC for an dispatch width of 16 and various instruction window sizes is shown for single-cycle dispatch

(D1), 2-cycle pipelined dispatch (D2), and 3-cycle pipelined dispatch (D3), all with and withoutsuperspec-

ulation (+SS). Results for theunrestricted model are also included for reference.

64 128 256 Unrestricted
Instruction Window Size

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

IP
C

go
D1
D1+SS
D2
D2+SS
D3
D3+SS

64 128 256 Unrestricted
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

IP
C

m88ksim

64 128 256 Unrestricted
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

IP
C

gcc

64 128 256 Unrestricted
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

IP
C

compress

64 128 256 Unrestricted
Instruction Window Size

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

IP
C

li

64 128 256 Unrestricted
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

IP
C

ijpeg

64 128 256 Unrestricted
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

IP
C

perl

64 128 256 Unrestricted
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

IP
C

vortex

Page 22 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

Furthermore, in all cases but one (gcc with single-cycle dispatch),superspeculation under the restricted

model (which accounts for memory hierarchy latencies) handily outperforms the unrestricted model withoutsuper-

speculation (which assumes a perfect memory system). This indicates thatsuperspeculation is clearly a more promis-

ing route towards increased performance than building increasingly aggressive memory hierarchies or pursuing

instruction or data prefetching techniques.

The results for the floating-point benchmarks, shown in Figure 9-6, are less interesting. Whilesuperspecula-

tion achieves significant speedups on several benchmarks (tomcatv, apsi, swim, applu), particularly with multi-cycle

dispatch, most floating-point benchmarks already perform quite well even without it. We attribute this to two factors:

control-flow in these benchmarks is relatively predictable, hence our control-speculative techniques provide little

benefit; and an abundance of program parallelism, which tends to already saturate available resources (for example,

note the significant increase in IPC obtained by increasing window size forswim, applu andmgrid).

10.0 Conclusions

We make five major contributions in this paper. First of all, we introduce theweak dependence model for

semantically correct execution, which lays a theoretical foundation for the speculative techniques proposed in this

Figure 9-4 SPECFP95 Performance of Superspeculation with Perfect Branching. The

sustained IPC for various dispatch widths and perfect branching is shown for single-cycle dispatch (D1), 2-

cycle pipelined dispatch (D2), and 3-cycle pipelined dispatch (D3), all with and withoutsuperspeculation

(+SS).

4 8 16 32 64
Fetch/Dispatch Width

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

applu

4 8 16 32 64
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

apsi

4 8 16 32 64
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

fpppp

4 8 16 32 64
Fetch/Dispatch Width

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

mgrid

4 8 16 32 64
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

swim

4 8 16 32 64
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

tomcatv
D1+SS
D2+SS
D3+SS
D1
D2
D3

Page 21 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

Figure 9-5 summarizes the performance ofsuperspeculation under therestricted machine model for the

integer benchmarks. There are two obvious trends. First of all, as with the unrestricted model, superspeculation is

rather insensitive to multi-cycle dispatch; nearly all of the performance of single-cycle dispatch (D1+SS) can be

obtained even with three-cycle dispatch (D3+SS). This is in stark contrast to the sharp reductions in performance that

multi-cycle dispatch causes withoutsuperspeculation (D1 vs. D3). Second,superspeculation is able to achieve most

of its available performance even with a relatively small instruction window. Having a larger instruction window

(128 or 256) does improve performance, but only marginally. This is encouraging, since next-generation micropro-

cessors already have instruction windows of size close to or greater than 64 (e.g. HP PA-8200 [Per96], DEC Alpha

AXP 21264 [Kel96]).

Figure 9-3 SPECInt95 Performance of Superspeculation with Perfect Branching. The

sustained IPC for various dispatch widths and perfect branching is shown for single-cycle dispatch (D1), 2-

cycle pipelined dispatch (D2), and 3-cycle pipelined dispatch (D3), all with and withoutsuperspeculation

(+SS).

4 8 16 32 64
Fetch/Dispatch Width

0.0

3.0

6.0

9.0

12.0

15.0

IP
C

go
D1+SS
D2+SS
D3+SS
D1
D2
D3

4 8 16 32 64
0.0

3.0

6.0

9.0

12.0

15.0

IP
C

m88ksim

4 8 16 32 64
0.0

3.0

6.0

9.0

12.0

15.0

IP
C

gcc

4 8 16 32 64
0.0

3.0

6.0

9.0

12.0

15.0
IP

C
compress

4 8 16 32 64
Fetch/Dispatch Width

0.0

3.0

6.0

9.0

12.0

15.0

IP
C

li

4 8 16 32 64
0.0

3.0

6.0

9.0

12.0

15.0
IP

C

ijpeg

4 8 16 32 64
0.0

3.0

6.0

9.0

12.0

15.0

IP
C

perl

4 8 16 32 64
0.0

3.0

6.0

9.0

12.0

15.0

IP
C

vortex

Page 20 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

even when the effects of branch mispredictions are completely eliminated. Furthermore, by comparing Figure 9-1

with Figure 9-3, we see thatsuperspeculation with an imperfect branch predictor consistently outperforms conven-

tional issuing with a perfect branch predictor, even with single-cycle dispatch. With multi-cycle dispatch,superspec-

ulation handily outperforms perfect branching, indicating thatsuperspeculation is clearly a more promising route and

provides more leverage towards increased performance than building ever-more-accurate branch predictors, particu-

larly since branch predictors are already highly optimized. The only two exceptions to this trend areapplu andmgrid,

which are almost completely insensitive to dispatch latency with a perfect branch predictor. However, we suspect this

behavior will break down quickly with any deviation from perfect branch prediction, since even with the very low

branch misprediction rates shown for these benchmarks in Table 4-1, they show significant sensitivity to dispatch

latency in Figure 9-2

9.3 Restricted Model
Finally, we want to examine the performance ofsuperspeculation with a more realistic machine model. We

include three additional structural limitations into our model: latencies due to the memory hierarchy, overall instruc-

tion window size, and completion bandwidth. These parameters are summarizes in Table 4-3 for therestricted

machine model.

Figure 9-2 SPECFP95 Performance of Superspeculation. The sustained IPC for various dis-

patch widths is shown for single-cycle dispatch (D1), 2-cycle pipelined dispatch (D2), and 3-cycle pipe-

lined dispatch (D3), all with and withoutsuperspeculation (+SS).

4 8 16 32 64
Fetch/Dispatch Width

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

applu

4 8 16 32 64
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

apsi

4 8 16 32 64
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

fpppp

4 8 16 32 64
Fetch/Dispatch Width

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

mgrid

4 8 16 32 64
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

swim

4 8 16 32 64
0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

IP
C

tomcatv
D1+SS
D2+SS
D3+SS
D1
D2
D3

Page 19 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

point benchmarks. Naturally, in the presence of a perfect branch predictor, limitedeager execution will provide no

benefit. However, we see thatdependence prediction (+DP), source operandvalue prediction (+VP), and limitedcon-

trol equivalence detection (+CE) combine to provide significant performance increases, taking us to 10 sustained IPC

and beyond for all but two of the integer benchmarks (vortex only reaches 7.5 IPC, whilego reaches 14.0 IPC with

single-cycle dispatch, but drops to 8.2 with three-cycle dispatch).

For the floating-point benchmarks, performance improves significantly for three of them with perfect branch

prediction (fpppp, tomcatv, andapsi), while for the other three (swim, applu, andmgrid), perfect branch prediction

primarily ameliorates the performance penalty of multi-cycle dispatch, and narrows the gap between conventional

issuing andsuperspeculation.

In summary, we have shown thatsuperspeculation continues to provide significant performance increases,

Figure 9-1 SPECInt95 Performance of Superspeculation. The sustained IPC for various dis-

patch widths is shown for single-cycle dispatch (D1), 2-cycle pipelined dispatch (D2), and 3-cycle pipe-

lined dispatch (D3), all with and withoutsuperspeculation (+SS).

4 8 16 32 64
Fetch/Dispatch Width

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

go
D1+SS
D2+SS
D3+SS
D1
D2
D3

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

m88ksim

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

gcc

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

compress

4 8 16 32 64
Fetch/Dispatch Width

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

li

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

ijpeg

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

perl

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

vortex

Page 18 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

We see the beneficial effects of this interaction in Figure 8-3. Two excellent examples of this behavior arecompress

andvortex, which both derive virtually no benefit from +EE+CE without value prediction (see Figure 8-1 and Figure

8-2), but do derive significant benefit from it in conjunction with value prediction. Forcompress, single-cycle asymp-

totic IPC jumps from 5.2 with just value prediction to 6.2 when +EE+CE are added, while forvortex, single-cycle

asymptotic IPC jumps from 6.2 with just value prediction to 6.9 when +EE+CE are added.

9.0 Putting It All Together: Superspeculation

The combination of these four techniques--dependence prediction (+DP), source operandvalue prediction

(+VP), limitedeager execution (+EE), and limitedcontrol equivalence detection (+CE)--leads to a microarchitectural

paradigm we loosely termsuperspeculation (+SS). In this paradigm, we attempt to break through restrictions that

were previously assumed to be hard limits by exploiting theweak dependence model to aggressively speculate

beyond them. We do so by taking advantage of value locality in the data flow of a program (to do value prediction) as

well as the control logic of the processor (to do dependence prediction). We also find the performance benefits of each

of the techniques proposed to be mutually synergistic (i.e. they tend to be magnified in the presence of the others). We

collect performance results for three different machine models:superspeculation with infinite execution resources

and a realistic branch predictor (unrestricted), superspeculation with infinite execution resources and a perfect branch

predictor (perfect), andsuperspeculation with a finite instruction window and memory hierarchy with a realistic

branch predictor (restricted). The parameters for these machine models are summarized in Table 4-3.

9.1 Unrestricted Machine Model
Theunrestricted machine model is similar to the one used in the previous sections, but combines all four of

the superspeculative techniques to maximize sustainable IPC. In Figure 9-1 and Figure 9-2 we show the effect of

superspeculation for various dispatch widths and dispatch latencies for the integer and floating-point benchmarks.

The best possible performance is obtained with single-cycle dispatch andsuperspeculation, where the asymptotic

IPC for the integer benchmarks is 8.6 in the best case (m88ksim) and 5.2 in the worst case (go). However, in all cases,

the asymptotic IPC for even three-cycle dispatch withsuperspeculation exceeds that of single-cycle dispatch without

superspeculation, and is only slightly worse than single-cycle dispatch withsuperspeculation in many cases (com-

press, m88ksim, li , ijpeg, vortex).

For the floating-point benchmarks, asymptotic IPC levels off around 14 forfpppp, around 10 forapsi, and

around 6 fortomcatv. For the other three benchmarks (applu, swim, andmgrid), performance does not appear to be

leveling off, even at 64-wide dispatch. As with the integer benchmarks,superspeculation for even three-cycle dis-

patch always outperforms the baseline model’s conventional issuing policy. However, the margins are less significant

in many cases.

In summary, we have shownsuperspeculation to be a microarchitectural approach that not only provides

significant performance increases in the presence of imperfect branch prediction (frequently 200%-300% faster than

the baseline), but one that is also relatively insensitive to deeper pipelining, hence greatly facilitating the implementa-

tion of very-wide-dispatch and deeply-pipelined superscalars.

9.2 Perfect Machine Model
In anticipation of future improvements in branch predictor technology, and to further explore the perfor-

mance potential ofsuperspeculation, we simulatesuperspeculation in conjunction with a perfect fetch and branch

predictor. Results for theperfect machine model are shown in Figure 9-3 and Figure 9-4 for the integer and floating-

Page 17 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

without +EE+CE (m88ksim, gcc, ijpeg).

Our limited scheme forcontrol equivalence detection interacts in an interesting way with source operand

value prediction. Sincecontrol equivalence detection introduces the potential of multiple definitions reaching a single

dependent use at control flow joins (i.e. the targets of the short forward branches), the hardware must speculatively

choose (through branch prediction) one or the other reaching definition to satisfy the dependent use. However, this

choice cannot be verified as correct until the conditional branch is resolved. In effect, this increases the result latency

of the defining instruction to match that of the conditional branch. Fortunately, source operandvalue prediction, in

conjunction with theweak dependence model, is able to remedy this situation. In cases where the source operand

value has been predicted, the only dependentuse that is delayed until after the conditional branch resolves is the value

comparison that verifies the predicted value. Hence, subsequent dependent instructions are free to issue and execute.

Figure 8-3 Cumulative Effect of +EE+CE and Value Prediction. The sustained IPC for

various dispatch widths is shown for single-cycle dispatch (D1), 2-cycle pipelined dispatch (D2), and 3-

cycle pipelined dispatch (D3), all with and without both +EE+CE and value prediction (+VP+EE+CE).

4 8 16 32 64
Fetch/Dispatch Width

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

go
D1+VP+EE+CE
D2+VP+EE+CE
D3+VP+EE+CE
D1
D2
D3

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

m88ksim

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

gcc

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

compress

4 8 16 32 64
Fetch/Dispatch Width

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

li

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

ijpeg

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

perl

4 8 16 32 64
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

IP
C

vortex

Page 16 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

cases (compress andvortex), limited eager execution andcontrol equivalence detection provide virtually no perfor-

mance gain at all. Also, in all cases, increasing the dispatch latency tends to reduce the magnitude of the speedup

obtained with limitedeager execution andcontrol equivalence detection. However, an encouraging trend shows up

with m88ksim, gcc, andijpeg; namely, that noticeable improvements in IPC are available beyond dispatch widths of

16 and even 32.

Further good news, however, shows up when we combine +EE+CE withdependence prediction. These

results are shown in Figure 8-2, where we see that much of the performance penalty associated with pipelined dis-

patch can be eliminated even in conjunction with +EE+CE, allowing two- and three-cycle dispatch to come much

closer to the performance of single-cycle dispatch with +EE+CE, and occasionally even beating single-cycle dispatch

Figure 8-2 Cumulative Effect of +EE+CE and Dependence Prediction. The sustained

IPC for various dispatch widths is shown for single-cycle dispatch (D1) with and without +EE+CE, 2-cycle

pipelined dispatch (D2) with and without both +EE+CE and dependence prediction (+DP+EE+CE), and 3-

cycle pipelined dispatch (D3) with and without both +EE+CE and dependence prediction (+DP+EE+CE).

4 8 16 32 64
Fetch/Dispatch Width

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

go
D1+EE+CE
D1
D2+DP+EE+CE
D3+DP+EE+CE
D2
D3

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

m88ksim

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

gcc

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
IP

C

compress

4 8 16 32 64
Fetch/Dispatch Width

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

li

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
IP

C

ijpeg

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

perl

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

vortex

Page 15 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

is predicted taken, instructions between the branch and its target are prohibited from writing dependence information

into the DRB or MF structures (just as in the +EE scheme described in Section 8.1). Once dispatch reaches the branch

target, this prohibition is no longer in effect, and instructions are dispatched as usual. If the short forward branch that

bypassed these instructions is later determined to have been mispredicted, the MF is restored, as always, from the

branch recovery stack, and dispatch proceeds as usual for all subsequent instructions. However, since they may have

already executed, their results will be immediately available in the value silo, resulting in a significantly reduced

branch misprediction penalty.

In Figure 8-1 we show the effect of limited eager execution andcontrol equivalence detection on IPC for

various dispatch widths and dispatch latencies for the eight integer benchmarks. The best performance, obviously, is

obtained with single-cycle dispatch, where asymptotic IPC jumps from 4.2 to 6.8 in the best case (ijpeg). In the worst

Figure 8-1 Effect of Limited Eager Execution (+EE) and Control Equivalence Detec-
tion (+CE). The sustained IPC for various dispatch widths is shown for single-cycle dispatch (D1), 2-

cycle pipelined dispatch (D2), and 3-cycle pipelined dispatch (D3), all with and without +EE+CE.

4 8 16 32 64
Fetch/Dispatch Width

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

go
D1+EE+CE
D1
D2+EE+CE
D2
D3+EE+CE
D3

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

m88ksim

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

gcc

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
IP

C

compress

4 8 16 32 64
Fetch/Dispatch Width

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

li

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
IP

C

ijpeg

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

perl

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

vortex

Page 14 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

These results are shown in Figure 7-3, where we see that virtually all of the performance penalty associated with

pipelined dispatch has been eliminated, allowing even three-cycle dispatch to nearly match the performance of sin-

gle-cycle dispatch. Even the worst case benchmark (go) only degrades by 17% from single-cycle to two-cycle dis-

patch, while the best case (vortex) degrades by only 2% for two-cycle dispatch and 4% for three-cycle dispatch.

Furthermore, three-cycle dispatch withvalue anddependence prediction can usually at least match, and frequently

clearly outperform (compress, vortex, m88ksim, li), single-cycle dispatch withoutvalue or dependence prediction.

8.0 Limited Eager Execution and Control Equivalence Detection

To further enhance the performance of wide-dispatch superscalars, we propose two additional techniques

that exploit theweak dependence model by relaxing the issue constraints that control dependences impose on conven-

tional processors. These techniques arelimited eager execution (+EE), which seeks to alleviate the branch mispredic-

tion penalty, andlimited control equivalence detection (+CE), which exploits control-flow equivalence between the

sites and targets of short conditional branches to expose additional instruction-level parallelism.

8.1 Limited Eager Execution
Eager execution has been proposed as one remedy for the branch misprediction penalty. By executing all

paths, and then selecting the correct outcome once conditional branches resolve, the latency penalty of misprediction

can be eliminated. However, this occurs at tremendous hardware costs, since the number of paths to be executed can

grow exponentially. Recent work on Disjoint Eager Execution (DEE) attempts to remedy this problem by pruning the

number of paths based on cumulative branch probabilities [US95]. In this paper, we propose a very limited form of

eager execution that exploits instruction fetch and dispatch bandwidth that has already been consumed by instructions

on the non-predicted path. In limitedeager execution (hereafter referred to as +EE), we simply allow instructions that

follow a predicted-taken branch within a fetch group to dispatch speculatively up to the next taken or predicted-taken

branch or the end of the fetch group, whichever occurs first. By doing so, we may avoid the cost of eventually re-exe-

cuting these instructions if the branch ends up being not-taken (i.e. mispredicted as taken). Naturally, we also impact

usage of other structural resources, but since we are measuring the potential performance of this approach, we ignore

that effect for now. The impact on our dispatch logic is minimal, and we avoid the “hardware explosion” usually asso-

ciated with eager execution. Instructions dispatched on a non-predicted path are simply prohibited from writing their

dependence information into the DRB or MF structures described in Section 5. If the branch that bypassed these

instructions is later determined to have been mispredicted, the MF is restored, as always, from the branch recovery

stack, and dispatch proceeds as usual for these instructions. However, since they may have already executed, their

results will be immediately available in the value silo, often resulting in a reduced branch misprediction penalty.

8.2 Limited Control Equivalence Detection
Exploiting control equivalence has been shown to be very important to sustaining high IPC in a number of

theoretical studies (e.g. [LW92]). However, dynamically detecting and exploiting control equivalence in the general

case can be very difficult and lead to complex hardware (one possible implementation is discussed in [US95]). Rather

than attacking the general case, we propose a simple, limited approach called limitedcontrol equivalence detection

(+CE) that captures dynamic control equivalence between the site and target of short forward branches within a fetch

group (note that this is not full control equivalence in the strict static sense, but only within our limited dynamic

instruction window). This is a simple extension to the limitedeager execution scheme described in Section 8.1. When

the dispatch hardware detects a short forward branch, it continues dispatching subsequent instructions. If the branch

Page 13 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

In Figure 7-2 we show the effect ofvalue prediction on IPC for various dispatch widths and dispatch laten-

cies for the eight integer benchmarks. The best performance, obviously, is obtained withvalue prediction and single-

cycle dispatch, which levels off around a dispatch width of sixteen to 3.7 IPC in the worst case (go), and 6.2 IPC in

the best case (vortex). Lengthening dispatch to two and three cycles degradesgo to asymptotic IPC of 2.6 and 2.0,

respectively, while reducingm88ksim (which is now the best performer) to 4.5 and 3.4 IPC.Value prediction

improves performance significantly in all cases over the baseline cases without value prediction, and the knees of the

curves shifts further to the right. Also, forijpeg, value prediction is able to overcome nearly all of the performance

penalty of pipelined dispatch.

The real good news, however, shows up when we combinevalue prediction with dependence prediction.

Figure 7-3 Cumulative Effect of Value and Dependence Prediction. The sustained IPC for

various dispatch widths is shown for single-cycle dispatch (D1) with and without value prediction (+VP), 2-

cycle pipelined dispatch (D2) with and without both dependence and value prediction (+DP+VP), and 3-

cycle pipelined dispatch (D3) with and without both dependence and value prediction (+DP+VP).

4 8 16 32 64
Fetch/Dispatch Width

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

go
D1+VP
D2+DP+VP
D3+DP+VP
D1
D2
D3

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

m88ksim

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

gcc

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
IP

C
compress

4 8 16 32 64
Fetch/Dispatch Width

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

li

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
IP

C

ijpeg

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

perl

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

vortex

Page 12 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

the number of unpredictable source operands that were identified as such by the CT and the total number of unpre-

dictable source operands. Thedependence prediction hit rate (column five) is included to show the interaction

betweenvalue prediction and dependence prediction. When both types of prediction are used, operands that are

deemed unpredictable by the CT are relegated todependence prediction. We see that thedependence prediction hit

rates are better across the board than the ones shown in Table 6-1, indicating that the techniques are mutually syner-

gistic. We also note that thevalue locality numbers are similar to those reported earlier [LS96], while the CT hit rates

are somewhat better. The former is not surprising, since source operands should be no more or less predictable than

destination operands, while we attribute the latter improvement to thegshare-like CT lookup index used in these

experiments.

Figure 7-2 Effect of Value Prediction. The sustained IPC for various dispatch widths is shown for

single-cycle dispatch (D1) with and without value prediction (+VP), 2-cycle pipelined dispatch (D2) with

and without value prediction (+VP), and 3-cycle pipelined dispatch (D3) with and without value prediction

(+VP).

4 8 16 32 64
Fetch/Dispatch Width

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

go
D1+VP
D1
D2+VP
D3+VP
D2
D3

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

m88ksim

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

gcc

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
IP

C
compress

4 8 16 32 64
Fetch/Dispatch Width

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

li

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
IP

C

ijpeg

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

perl

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

vortex

Page 11 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

value prediction also uses a direct-mapped classification table (CT) similar to the one proposed in [LS96] for classify-

ing the predictability of source operands and deciding whether or not the operands should be predicted. In our exper-

iments, the CT is direct-mapped, has 8K entries with a 2-bit saturating counter at each entry, and is indexed by

hashing together the instruction address bits, thegshare branch predictor’s branch history register (BHR), and the rel-

ative position of the operand being looked up. As withdependence prediction, some initial experiments which are not

reported in detail in this paper indicate that the classification hit rates improve noticeably when we use agshare-like

lookup index. Hence, we use the gshare-like lookup index in all experiments reported herein.

When all of the input operands of an instruction are classified as predictable, the instruction is permitted to

dispatch early, after the first dispatch cycle (instructions with unpredictable source operands may still end up execut-

ing sooner than without value prediction, in cases where an operand that is predicted is on a critical path). Once dis-

patch finishes and exact dependence information becomes available, the instruction waits for itsverifiedoperands to

become available in the value silo (operands in the value silo becomeverifiedwhen the instructions that generate

them have validated all of their input operands) and then compares them against its predicted operands. If they match,

the result operands of the instruction are markedverified, and the instruction is allowed to complete in program order.

If they don’t match, the instruction re-executes with the correct operands. Just as in [LS96], this results in a one-cycle

misprediction penalty, since the instruction in question as well as all of its dependents do not execute with their cor-

rect inputs until one cycle later than if there had been no prediction. However, due to the lack of a global mispredic-

tion broadcast mechanism like the one used in [LS96], the one-cycle penalty can occur at every level in a dependence

chain, rather than only at the top of the dependence chain.

Table 7-1 summarizes the value locality, classification hit rates, and dependence prediction hit rates for each

of our benchmarks. Value locality (column two), as defined in [LWS96], is the ratio of the dynamic count of source

operands that are predictable with the VPT mechanism and the dynamic count of all source operands. Thepredictable

hit rate (column three) is the ratio of the number of predictable source operands that were identified as such by the CT

and the total number of predictable source operands. Similarly, theunpredictable hit rate (column four) is the ratio of

Table 7-1: Source Operand Value Prediction Results

Bench
mark

Value
Locality

CT
Predictable

Hit Rate

CT
Unpredictable

 Hit Rate

Dependence
Prediction
Hit Rate

go 45.3% 77.0% 83.7% 42.1%

m88ksim 56.1% 92.8% 89.6% 89.6%

gcc 40.9% 78.0% 89.6% 63.0%

compress 42.4% 97.5% 98.8% 94.6%

li 33.7% 76.9% 92.9% 75.4%

ijpeg 35.2% 91.6% 95.9% 81.2%

perl 44.5% 76.4% 84.3% 54.4%

vortex 32.9% 83.3% 93.9% 82.5%

applu 25.5% 93.9% 95.9% 60.2%

apsi 35.0% 92.7% 95.2% 66.2%

fpppp 26.8% 75.7% 94.7% 33.0%

mgrid 12.1% 99.5% 99.9% 70.3%

swim 19.8% 94.8% 99.6% 89.3%

tomcatv 58.0% 93.8% 91.7% 84.8%

Page 10 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

latencies for the eight integer benchmarks. Without dependence prediction, the best performance, obviously, is

obtained with single-cycle dispatch, which levels off at a dispatch width of sixteen to 2.8 IPC in the worst case (go),

and 4.8 IPC in the best case (m88ksim). Lengthening dispatch to two and three cycles degradesgo to asymptotic IPC

of 1.7 and 1.3, respectively, while reducingijpeg (which is now the best performer) to 3.7 and 2.5 IPC. Furthermore,

the knee of the dispatch-width curves has now shifted left to between four and eight, rather than sixteen, hence erod-

ing incentive for building processors with dispatch widths exceeding four, which is the width that many current-gen-

eration microprocessors implement. Fortunately, dependence prediction is able to alleviate these depressing trends by

reducing the average dispatch latency. For both two- and three-cycle dispatch, dependence prediction significantly

elevates the IPC curves and brings them much closer to the single-cycle case. Furthermore, the knee of these dis-

patch-width curves shifts back towards sixteen, restoring incentive for building wider superscalar processors. Three

benchmarks--compress, li , and ijpeg--behave particularly well, eliminating nearly all of the performance penalty

induced by two- and three-cycle dispatch.

7.0 Source Operand Value Prediction and Recovery

A complementary approach for reducing the adverse performance impact of pipelined dispatch involves a

variation on previous work on value prediction [LS96]. In earlier work, the destination operands (i.e. results) of

instructions were predicted via table-lookup at fetch/dispatch, and then forwarded directly to dependent instructions.

The shortcoming of this approach is that dependence relationships must be detected before values can be forwarded

to dependent instructions. To overcome this problem, we propose predicting the values ofsource operands, rather

thandestination operands, hence decoupling value-speculative instruction dispatch entirely from dependence detec-

tion. As in the earlier work, we predict only floating-point and general-purpose register operands, and not condition

registers or special-purpose registers.

Source operandvalue prediction (+VP) is illustrated in Figure 7-1. As in [LS96], we use a value prediction

table (VPT) to keep track of past operand values, and exploit the value locality [LWS96] of operands to predict future

values. In our experiments, the VPT is direct-mapped, 32KB in size, and is indexed by hashing together the instruc-

tion address bits and the relative position of the operand (i.e. first, second, or third) being looked up. Source operand

Figure 7-1 Source Operand Value Prediction Mechanism.The source operand posi-

tion and PC are hashed together to index the VPT, while the operand position, PC, and BHR are

hashed together to index the CT. The prediction and value histories are updated at completion.

Classification Table (CT) Value Prediction Table (VPT)
<v> <v> <value history><pred history>

Predicted ValuePrediction Result Updated Value

Oper. Position

PC of pred. instr.

BHR

Predict?

Page 9 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

correct predictions are shown in Table 6-1. We find that for most benchmarks, the DPT achieves a respectable hit rate.

Some initial experiments, which are not reported in detail in this paper, indicated that using agshare-like lookup

index improves the DPT hit rate considerably over using just the instruction address. Hence, we use agshare-like

lookup index for all the experiments reported herein. For three benchmarks--go, perl, andfpppp--the dependence pre-

diction hit rates were rather low. This behavior can be attributed to the unpredictable branch behavior of these three

benchmarks, since unpredictable branches can lead to unpredictable dependence distances when there are multiple

definitions reaching a use. As seen in Figure 2-1 and Table 4-1, bothgo andperl have high BTB misprediction rates,

while go andfpppp have high BHT misprediction rates.

In Figure 6-2 we show the effect of dependence prediction on IPC for various dispatch widths and dispatch

Figure 6-2 Effect of Dependence Prediction. The sustained IPC for various dispatch widths is

shown for single-cycle dispatch (D1), 2-cycle pipelined dispatch (D2) with and without dependence predic-

tion (+DP), and 3-cycle pipelined dispatch (D3) with and without dependence prediction (+DP).

4 8 16 32 64
Fetch/Dispatch Width

0.0

1.0

2.0

3.0

4.0

5.0

IP
C

go
D1
D2+DP
D2
D3+DP
D3

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

IP
C

m88ksim

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

IP
C

gcc

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

IP
C

compress

4 8 16 32 64
Fetch/Dispatch Width

0.0

1.0

2.0

3.0

4.0

5.0

IP
C

li

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

IP
C

ijpeg

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

IP
C

perl

4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

IP
C

vortex

Page 8 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

effects, we propose a mechanism calleddependence prediction (+DP) that can frequently short-circuit multi-cycle

dispatch by predicting the dependence relationships between instructions in flight and speculatively allowing instruc-

tions that are predicted to be data ready to execute in parallel with exact dependence checking.

As shown in Figure 6-1, dependence prediction is implemented with a dependence prediction table (DPT)

with 8K entries, which is direct-mapped and indexed by hashing together the instruction address bits, thegshare

branch predictor’s branch history register (BHR), and the relative position of the operand (i.e. first, second, or third)

being looked up. Each DPT entry contains a numeric value which reflects the relative index of that input operand’s

source in the value silo. This relative index is used to check the value silo to see if the operand is already available. If

all of the instruction’s predicted input operands are available, the instruction is permitted to dispatch early, after the

first dispatch cycle. In the second (or third, in the three-cycle dispatch pipeline) dispatch cycle, exact dependence

information becomes available, and the earlier prediction is verified against the actual information. In case of a mis-

match, the DPT entry is replaced with the correct relative position, and the early dispatch is cancelled.

The total number of operands predicted, average number of predictions per instruction, and percentage of

Figure 6-1 Dependence Prediction Mechanism.During stage P1, the source operand

position, PC, and branch history register (BHR) are hashed together to index the DPT, which predicts

the value silo entry that contains the source operand. During P2, the prediction is verified.

Table 6-1: Dependence Prediction Results

Bench
mark

Operands
Predicted

Per
Instruction

Correct
Predictions

go 89.6M 1.126 38.0%

m88ksim 113.4M 1.060 77.4%

gcc 174.2M 0.958 59.7%

compress 40.6M 1.023 87.3%

li 49.8M 0.878 72.4%

ijpeg 92.3M 1.001 71.9%

perl 47.3M 0.944 48.2%

vortex 120.7M 0.788 71.3%

applu 53.1M 1.380 55.5%

apsi 215.8M 1.352 58.9%

fpppp 71.9M 1.435 32.1%

mgrid 148.5M 1.338 69.9%

swim 49.7M 1.282 87.3%

tomcatv 40.8M 0.864 77.8%

Value

Dispatch Group
P1: SrcDst

Silo

PC

BHR

Dependence Prediction Table (DPT)
<v> <value silo index>

Page 7 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

mentation, it can be partitioned by register type and even register number.

As shown in Figure 5-1, during the first pipeline stage P1 of pipelined dispatch, all instructions in a fetch

group allocatevalue silo slots for their destination operands, and then write the <register number,value silo slot>

mapping tuples into theirdependence-resolution buffer (DRB) entries. At the same time, thevalue silo slot numbers

are written into themapping file (MF), a table indexed by the register number. If a dispatch group contains more than

one write to the same architected register, arbitration logic selects the last write before a taken or predicted-taken

branch. During the second pipeline stage P2, all instructions in a fetch group search ahead in the DRB for a register

number matching each of their input registers (the DRB is multi-ported and content-addressable). If multiple match-

ing entries are found, the closest one (i.e. the most recent definition) is selected. If no matching entry is found, the

shadow mapping file (MF’) entry for the register is used instead. MF’ summarizes the register-to-value silo mappings

for all previous fetch groups, and is a one-cycle-delayed copy of the mapping file MF. If no register-to-value-silo

mapping exists, the appropriate MF’ entry will instead point to the architected register file. At the end of P2, all the

instructions in the fetch group know where in the value silo they can find their input operands, and can check the

scoreboarded valid bits to see if they are available.

Whenever a predicted branch occurs within a dispatch group, a snapshot of the mapping file MF that

includes all register writes through the branch is pushed onto a branch recovery stack (BRS). Any instruction follow-

ing a taken or predicted-taken branch within a fetch group is discarded and prevented from writing into either the

DRB or the MF. When a branch misprediction is resolved, any instructions that are newer than the branch are dis-

carded along with their value silo slots, and fetching starts over from the actual destination of the mispredicted

branch, while the MF snapshot corresponding to that branch is retrieved from the branch recovery stack.

As described here, instruction dispatch is pipelined into two stages. However, it is easy to envision even

deeper pipelining of this process. Hence, we simulate the performance effects of and present results for one-, two-,

and three-stage dispatch pipelines.

6.0 Dependence Prediction and Recovery

Figure 2-1 illustrates the detrimental performance effects of a pipelined dispatch structure. In short, a pipe-

lined dispatch structure increases the number of cycles between a branch misprediction and the detection of that

misprediction, hence aggravating the misprediction penalty and severely limiting performance. To alleviate these

Figure 5-1 Pipelined Dispatch Structure.During stage P1, all instructions in a fetch group

write destination register rename mappings into the DRB and the MF. During stage P2, the instruc-

tions search the DRB and MF’ for source register rename mappings.

BRS
BRS

BRS

Value Silo
Dispatch Group

MF

MF’

P1:

P2: DRB

Src Dst

BRS

Page 6 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

arbitrarily, while the execute stage has unlimited width. The latency of the dispatch stage can also be varied from one

to three cycles, while the latency of the execute stage is instruction-dependent and is summarized in Table 4-2. All

functional units are fully pipelined, all architected registers are dynamically renamed, and instructions are allowed to

execute out-of-order subject to the total instruction window size. However, all branches are executed in program

order, and all loads are prevented from accessing memory until the addresses of all previous stores are known. If an

alias to an earlier store exists, a forwarding mechanism exists that delays the load until the store’s data becomes avail-

able, and then forwards that value directly to the load (in effect, the processor dynamically renames memory).

Our model uses a very aggressivegshare branch predictor [McF93] with a 256K entry branch history table

(BHT) with 2 bits per entry that is indexed by the exclusive-or of a 18-bit branch history register and the branch

instruction address. The branch target buffer (BTB) is direct-mapped, is not tagged, and has 1024 entries, while the

return address stack (RAS) also has 1024 entries. Fetch and branch prediction both occur during thefetch stage of the

pipeline, while instructions are fetched from a dual-banked instruction cache with line size equal to the specified fetch

width (this configuration is described asinterleaved sequential in [CMMP95]). Up to three conditional branches can

be predicted per cycle, with a simplegshare extension to the scheme described in [RBS96]. Our model also supports

a perfect branching mode, where all of these structures are assumed to be perfect, and hence introduce no delays into

program execution.

We use three basic configurations of this machine model in our simulations. Key parameters for the three

configurations are summarized in Table 4-3. Theunrestricted configuration is used to generate the intermediate

results presented in Section 6, Section 7, and Section 8. In Section 9, all three configurations--unrestricted, perfect,

andrestricted--are used to further explore the performance potential ofsuperspeculation.

5.0 Pipelined Dispatch Structure

In this section, we describe a pipelined dispatch structure that facilitates the implementation of wide-dis-

patch microarchitectures by reducing the circuit complexity and cycle-time demands imposed by simultaneous cross-

checking of data dependences within a large dispatch group. In this scheme, dependence checking is divided into two

pipeline stages. During the first stage, all destination registers within a dispatch group are identified and renamed, and

the rename mappings are written into thedependence-resolution buffer (DRB) and themapping file (MF). During the

second stage, all source registers are identified and their rename mappings are looked up in the DRB and theshadow

mapping file (MF’). In our microarchitecture, all register writes are renamed to slots in avalue silo. Thevalue silo is

used to scoreboard, hold, and forward the results of instructions until they are ready to complete and write back into

the architected register file. Conceptually, thevalue silo is a monolithic structure, but in an actual hardware imple-

Table 4-3: Machine Model Configurations

Parameter Unrestricted Perfect Restricted

Branch Predictor Imperfect Perfect Imperfect

Fetch and Dispatch Width {4,8,16,32,64} {4,8,16,32,64} 16

Completion Width Unrestricted Unrestricted 16

Instruction Window Infinite Infinite {64,128,256}

Instruction Cache Perfect Perfect 64K, 4-way, 64B lines

I-cache Miss Latency N/A N/A 10 CPU cycles

Data Cache Perfect Perfect 64K, 4-way, 32B lines

D-cache Miss Latency N/A N/A 10 CPU cycles

Page 5 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

support libraries, but does not account for supervisor-state execution. All of the benchmarks are run to completion,

albeit with reduced input sets and/or fewer iterations than in the SPEC95 reference runs.

4.2 Simulation Environment
Our simulation environment is built around the PSIM PowerPC functional emulator that is distributed as

part of the Free Software Foundation’s GDB debugger [Cag96]. This functional emulator gives us complete access to

the processor’s internal register state at each instruction boundary. This is a requirement for us, since we use value-

based dynamic prediction mechanisms to improve performance, and we need access to actual values, not just

addresses, to accurately simulate these mechanisms. Full functional emulation also gives us the ability to accurately

model the impact of mispredicted paths on internal processor structures. Currently, we only exploit this feature in a

limited fashion (i.e. only certain mispredicted paths are fully emulated), but we plan to expand the functionality of

our framework to include full simulation of all execution paths that the actual processor would exercise.

4.3 Machine Model
The machine model used in our simulations has a canonical four-stage pipeline:fetch, dispatch, execute, and

complete. The width of the fetch, dispatch, and completion stages and the total instruction window size can be varied

Table 4-1: Benchmark set

Bench
mark

Description Input Set
Run

Length
BHT

Mispred
BTB

Mispred
RAS

Mispred

go SPEC95 game 2stone9.in, 9x9, lev. 5 79.6M 12.0% 8.5% 0.0%

m88ksim SPEC95 88K simulator 100 iter . of dhrystone 107.0M 2.7% 4.3% 0.0%

gcc SPEC95 gcc compiler genoutput.i 181.8M 5.1% 8.7% 3.9%

compress SPEC95 data compression small input (10K) 39.7M 5.9% 0.0% 0.0%

li SPEC95 lisp emulator six queens problem 56.8M 3.0% 5.3% 12.2%

ijpeg SPEC95 jpeg encoder tinyrose.ppm 92.1M 2.7% 0.6% 18.7%

perl SPEC95 perl interpreter train scrabbl.pl 50.1M 2.4% 11.1% 4.1%

vortex SPEC95 database program reduced version of train 153.1M 0.6% 1.6% 11.4%

applu SPEC95 PDE Solver 5 iter, 12x12x12 38.5M 1.8% 0.2% 25.5%

apsi SPEC95 Atmospheric model 10 steps, 128x1x32 159.0M 8.0% 0.8% 9.2%

fpppp SPEC95 Quantum chemistry model 3 atoms (ref uses 30) 50.0M 10.9% 0.3% 0.8%

mgrid SPEC95 Multigrid solver 10 iterations (test has 40) 111.0M 2.4% 0.5% 57.9%

swim SPEC95 Shallow water model 10 iter 128x128 38.8M 1.9% 0.5% 0.4%

tomcatv SPEC95 Mesh Generation 3 iter w/ array size 43 47.2M 1.3% 2.4% 47.4%

Total/HM 1,204.6M

Table 4-2: Instruction Latencies

Instruction Class Issue Latency Result Latency

Integer Arithmetic and Logical 1 1

Integer Multiply 1 3

Integer Divide 1 10

Load/Store 1 1 for address, 2 for load data

FP Add/Subtract/Normalize/Negate 1 3

FP Multiply/Multiply-Add 1 3

FP Divide 1 11

Branch(pred/mispred) 1 0-1

Page 4 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

• Dependences can be temporarily violated during instruction execution, and

• Dependences need not be determined exactly or assumed pessimistically, but can instead be optimisti-

cally ignored or approximated.

Of course, the minimal requirement of semantic correctness must still be maintained before instructions are

allowed to modify the processor’s architected state. This can be achieved by verifying that the following conditions

are met before an instruction is allowed to complete:

• The current instruction must be the immediate successor of the most recently completed instruction in

the program’s flow of control, and

• The current instruction must have received input values that match the current architected values, with-

out regard for how those values were generated.

Note that these conditions eliminate the need for enforcing rigid source-to-sink relationships between data-

dependent instructions and allow them to execute in parallel. It is this property that enabled the performance gains

reported in [LWS96] and [LS96]. However, this property introduces an additional and previously unexploited degree

of freedom for the microarchitect; namely, that source-to-sink data flow relationships between instructions needn’t

even be detected before these instructions can begin execution. In effect, it pushes dependence checking and depen-

dence detection further down into the pipeline and eliminates it as an unnecessary front-end bottleneck. We use the

termsuperspeculation to informally represent aggressive microarchitectural techniques that employ theweak depen-

dence model to perform speculation beyond control and data dependences.

4.0 Experimental Framework

To evaluate the performance potential of theweak dependence model andsuperspeculation, we implement a

flexible emulation-based simulation framework for the PowerPC instruction set. Currently, the simulation framework

accurately models branch and fetch prediction, dispatch and completion width constraints, instruction window size,

latency in the memory hierarchy, and all branch misprediction and data dependence delays for realistic instruction

latencies. We intend to enhance the simulation framework to accurately model further structural resource limitations

(e.g. rename buffers, functional units, forwarding paths, memory bandwidth, etc.). However, since our intent is to

measure the performance potential ofsuperspeculation, rather than the actual performance of a fixed implementation,

we feel it is reasonable to refrain from modeling further structural constraints within the context of this paper.

4.1 Benchmarks
We selected the SPEC95 integer and floating-point benchmark suites for our study, since they are easily

available, widely used, and well-understood. We are aware that these may not be representative of commercial work-

loads [MDO94]. Table 4-1 summarizes the benchmarks and input sets used, and also shows run length (dynamic

instruction count) and BHT (branch history table), BTB (branch target buffer), and RAS (return address stack)

branch misprediction rates. The BHT misprediction rate is the number of mispredicted conditional branches divided

by the total number of conditional branches, the BTB misprediction rate is the number of taken branches with mispre-

dicted targets divided by the total number of taken branches, and the RAS misprediction rate is the total number of

subroutine returns with mispredicted targets divided by the total number of subroutine returns.

The integer benchmarks are compiled for the PowerPC instruction set with GCC version 2.7.2 at full optimi-

zation, while the floating-point benchmarks are compiled for the PowerPC instruction set with G77 version 0.5.18,

also at full optimization (we only use six out of ten SPECFP95 benchmarks due to time and space constraints). The

emulation environment captures the behavior of all user-state instructions, including those in the NetBSD runtime

Page 3 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

weak dependence model.

3.0 The Strong and Weak Dependence Models

To satisfy thesequential execution model inherent in most instruction set architectures, any implementation

of an architecture must maintain an in-order architectural state as if the instructions in an instruction stream were

being executed sequentially without any overlap. This model is useful, and necessary in almost any computing sys-

tem, because it enables a thread of control to be interrupted and later restarted at any instruction boundary (i.e. it

enables precise exceptions). Specifically, all implementations must ensure that two conditions are met before an

instruction is allowed to complete according to the sequential execution model:

• instructions must complete in the original program order (control-flow correctness), and

• instructions must produce semantically correct results (data-flow correctness).

That is, based on the in-order processor state that exists before the current instruction, the implementation

must ensure that the current instruction is indeed the next one in the flow of control, and also that the current instruc-

tion has received the correct operands in the program’s data flow. Current microprocessors expend significant

amounts of hardware to ensure that both of these conditions are met throughout the lifetime of an instruction being

executed. That is, there is an in-order front end that fetches and decodes instructions in order to determine control and

data dependences, an out-of-order execution core that tolerates varying latencies but still rigorously or strongly

enforces control and data dependences, and an in-order back end that completes instructions in program order once

all dependences have been resolved and execution has finished.

The major shortcoming of this approach is that it is overly rigorous in enforcing both of the above condi-

tions, and hence unnecessarily restricts available parallelism. When enforcing control flow correctness, modern pro-

cessors discard all subsequent instructions when a fetch or branch misprediction is detected, and refetch from the new

branch destination. All subsequent instructions already in flight are discarded due to the perceived difficulty of detect-

ing which ones were useful and/or received correct data operands. However, doing so discards potentially large num-

bers of useful instructions, whenever control equivalence exists between basic blocks. Theoretical studies (e.g.

[LW92]) have found the performance impact of this approach to be significant. Furthermore, when enforcing data

flow correctness, modern processors detect and enforce rigid source-to-sink data-flow relationships before instruction

execution is allowed to begin, which is more than the sequential execution model requires.

We classify such traditional and conservative processors as adhering to thestrong dependence model. The

strong dependence model, analogous to thestrong ordering of memory references [DSB86], requires that all control

and data dependences between instruction pairs--whether real or perceived--impose a serial ordering on the execution

of the dependent instructions. In fact, at its most extreme, the strong dependence model requires that:

• All dependences must be adhered to throughout the execution of an instruction, and

• All dependences must be determined in an exact fashion (or, when in doubt, dependences are pessimis-

tically assumed to exist).

Ad hoc attempts to relax the serialization requirements of thestrong dependence model have appeared spo-

radically as modern computer architecture has evolved. For example, techniques likespeculative disambiguation

[HSS94, GCM+94] can temporarily violate data dependences before those dependences are known. Similarly, branch

prediction enables speculative execution of instructions beyond conditional branches, hence violating control depen-

dences temporarily, until the branches resolve. However, conventional single-path speculative execution also induces

false control dependences, by assuming that all instructions following a conditional branch are control dependent on

the branch. These are false control dependences, just as antidependences (WAR) and output dependences (WAW) are

false data dependences [Joh91].

In order to circumscribe these and other aggressively speculative techniques, we propose theweak depen-

dence model, which specifies that:

Page 2 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

detected until a potentially large number of preceding branches have resolved. This complicates the implementation

and reduces the benefit of multiple-path (eager) execution [US95]. Furthermore, wide (i.e. greater than four) dispatch

is difficult to implement and has adverse impact on cycle time because all instructions in a dispatch group must be

simultaneously cross-checked. Even current microprocessor implementations with dispatch windows of four or less

(e.g. Alpha AXP 21164 [BK95], Pentium Pro [CS95]) require multiple instruction decode and dependence-checking

pipeline stages.

One obvious solution to the problem of the complexity of dependence detection is to pipeline it into two or

more stages to minimize impact on cycle time. In Section 5 we propose a pipelined approach to dependence detection

that facilitates the implementation of wide-dispatch microarchitectures. However, pipelined dependence checking

aggravates the cost of branch mispredictions by delaying resolution of mispredicted branches. In Figure 2-1, we see

the IPC impact of pipelining dependence checking on a 16-dispatch machine with an advanced branch predictor and

no other structural resource limitations (refer to Section 4.1 and Section 4.3 for further details on the benchmarks and

machine model). We see that lengthening dispatch to two or three pipeline stages (vs. the baseline case of one)

severely increases the number of cycles during which no useful instructions are dispatched and increases CPI

(decreases IPC) dramatically, to the point where sustaining even 2-3 IPC becomes very difficult.

We propose to alleviate these problems in two ways: by introducing a scalable, pipelined, and speculative

approach to dependence detection calleddependence prediction and also by exploiting a modified approach tovalue

prediction [LS96]. Fundamental to these is the notion that maintaining semantic correctness does not require that we

rigorously enforce source-to-sink data-flow relationships or that we even exactly detect these relationships before we

start executing. Rather, we use dynamically adaptive techniques for predicting values as well as dependences and

speculatively issue instructions early, before their dependences are resolved or even known. In fact, we are exploiting

a more relaxed enforcement of control and data dependences without violating semantic correctness. We call this the

Figure 2-1 Branch Misprediction Penalty. The approximate contribution of RAS, BTB,

and BHT mispredictions to overall CPI is shown for single-cycle dispatch (left bar), 2-cycle pipe-

lined dispatch (middle bar), and 3-cycle pipelined dispatch (right bar).

go m88ksim gcc compress li ijpeg perl vortex
0.0

0.2

0.4

0.6

0.8

1.0

C
yc

le
s

P
er

 In
st

ru
ct

io
n

(C
P

I) Other
BHT Mispred
BTB Mispred
RAS Mispred

Page 1 of 25

January 28, 1997. CMU Technical Report CMUCSC-97-1.

Approaching 10 IPC via Superspeculation

1.0 Motivation and Related Work

Recently, some attention has been focused on the microarchitectural challenges involved in breaking the10

IPC barrier (i.e. sustaining 10 instructions per cycle) [Pat96]. Fundamentally, there are two restrictions that limit the

degree ofIPC that can be achieved with sequential programs:control flow anddata flow. Control flow limits IPC by

imposing serialization constraints at forks and joins in a program’s control flow graph [ASU86].Data flow limits IPC

by imposing serialization constraints on pairs of instructions that are data dependent. Examining the extent and effect

of these limits has been a popular and important area of research, particularly in the case of control flow

[RF72,Wal91,LW92]. Continuing advances in the development of accurate branch predictors (e.g. [YP91]) have led

to aggressive control-speculative microarchitectures (e.g. the Intel Pentium Pro [CS95]), which undertake aggressive

measures to overcome control-flow restrictions by using branch prediction and speculative execution to bypass con-

trol dependences and expose additional instruction-level parallelism to the microarchitecture. Meanwhile, numerous

mechanisms have been proposed and implemented to eliminate false data dependences and tolerate the latencies

induced by true data dependences by allowing instructions to execute out of program order [Joh91].

Surprisingly, in light of the extensive energies focused on eliminating control-flow restrictions on parallel

instruction issue, less attention has been paid to eliminating data-flow restrictions on parallel issue. Recent work has

focused primarily on reducing the latency of specific types of instructions (usually loads from memory) by rearrang-

ing pipeline stages [Jou88], initiating memory accesses earlier [AS95], or speculating that dependences to earlier

stores do not exist [HSS94, GCM+94].

In [LWS96], Lipasti et al. introduce the notion ofvalue locality--defined as the recurrence of previously-

seen values--and demonstrate a technique--Load Value Prediction, or LVP--for predicting the results of load instruc-

tions at dispatch by exploiting the affinity between load instruction addresses and the values the loads produce. In

[LS96], they extend the LVP approach for predicting the results of load instructions to generalized value prediction

for all instructions that write an integer or floating-point register and show that a significant proportion of such writes

are trivially predictable. In the same vein, we propose exploitingvalue locality not only in the data-flow portion of a

microarchitecture, but also in the control logic. We find that the dependence relationships between dynamic instruc-

tions contain a great deal of value locality, and propose a mechanism--dependence prediction--for capturing and

exploiting this value locality to allow early dispatch of instructions in wide-dispatch machines. Furthermore, we find

that combining bothvalue anddependence prediction with limited forms ofeager execution andcontrol equivalence

detection leads to significant performance increases, with harmonic mean speedups ranging, depending on machine

model, from 40% to 176% for integer programs and 11% to 61% for floating-point programs.

2.0 Detecting Control and Data Dependences

Detecting control and data dependences among multiple instructions in flight is an inherently sequential task

that becomes very expensive combinatorially as the number of concurrent in-flight instructions increases. Olukotun et

al. argue convincingly against wide-dispatch superscalars because of this very fact [ONH+96]. Meanwhile, studies

have shown that to achieve highIPC (sustained instructions per cycle), the number of in-flight instructions must be

very large (e.g. [AS92]). Unfortunately, such studies have largely ignored the complexity of pair-wise dependence

checking between instructions in flight. Dependence checking is further complicated by the presence of control-flow

joins. Whenever multiple definitions reach a control-flow join, a data dependence relationship cannot even be

January 28, 1997. CMU Technical Report CMUCSC-97-1.

Approaching 10 IPC via Superspeculation

Mikko H. Lipasti and John Paul Shen

Technical Report CMUCSC-97-1

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh PA, 15213

(412) 268-3601
(412) 268-3204 (FAX)

{mhl,shen}@ece.cmu.edu

Abstract
Until recently, the serialization constraints induced by true data dependences have been
regarded as an absolute limit--the data-flow limit--on the parallel execution of serial pro-
grams. Likewise, the exact detection and enforcement of these dependences has been assumed
to be a requirement for semantically correct execution. This paper introduces theweak depen-
dence model, which relaxes these restrictions without violating program correctness, and pro-
poses a new microarchitectural paradigm calledsuperspeculation that exploits this new
dependence model to achieve uniprocessor IPC approaching ten.Superspeculation consists of
a set of control- and data-speculative techniques that can be used to relax the serialization
constraints induced by true dependences to allow instructions to issue and execute before
their control or data-flow dependences are resolved or even detected. We find that depen-
dence relationships between instructions are easily predictable, and that source operand val-
ues are frequently predictable as well. These discoveries minimize the IPC penalty of deeper
pipelining of instruction decode and dispatch and enable relatively simple implementations of
limited forms of eager execution and control equivalence detection that result in average inte-
ger program speedups ranging from 40% to 176% (harmonic mean), depending on machine
model.

KEYWORDS: Microarchitecture, superscalar processors, speculative execution, value prediction, eager

execution, control equivalence detection

