

Can Trace-Driven Simulators Accurately Predict Superscalar Performance?

Bryan Black, Andrew S. Huang, Mikko H. Lipasti and John Paul Shen
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh PA, 15213

{black, ahuang, mhl, shen}@ece.cmu.edu

Abstract

There are four crucial issues associated with perfor-
mance simulators: simulator retargetability, simulator vali-
dation, simulation speed and simulation accuracy. This
paper documents our experiences in developing perfor-
mance simulators and our recent findings in using these sim-
ulators. We are concerned with all four of the crucial issues.
Our first-generation tool, VMW, focused on achieving retar-
getability. Our second-generation tool, MW, significantly
improved simulation speed. Recently we validated a Pow-
erPC 604 simulator model, generated using MW, against an
actual PowerPC 604 hardware system. We also present
results on simulating extremely long traces on our PowerPC
620 model and highlight potential inaccuracies that can
result from trace sampling. As processor complexity contin-
ues to increase at a rapid rate and microarchitectures con-
tinue to become more speculative, it is not clear whether the
trace-driven paradigm of performance simulation can con-
tinue to effectively predict actual machine performance.

1. Introduction

Trace-driven performance simulators, or timing simula-
tors, are used by microarchitects during the early design
phase for exploring various design trade-offs in a quantitative
fashion. Simulation results are used to confirm or correct
designers’ intuitions. There are four important issues regard-
ing performance simulators; two concern the construction
and two involve the use of the simulators. These are: simu-
lator

retargetability

, simulator

validation

, simulation

speed

and simulation

accuracy

.
Retargetability not only allows a simulator to be reused for

the next generation design, it also facilitates efficient design
changes and hence the ease of design space exploration. Val-
idating the correctness of a simulator is a very difficult task.
One possibility is to validate a performance simulator against
the hardware model. However, frequently in the early design
phase the hardware model is not yet available. Furthermore,
due to the complexity and details of the hardware model, only
relatively short traces can be exercised. With increasing com-
plexity of the processor design and the lengthening of the
traces used, simulation time has been growing and simulation
speed can become an issue. Ultimately it is the accuracy of
the simulation results that determines the usefulness of these
simulators. Other than the difficulty in validating the simu-
lation model, there are other sources of inaccuracy, some of
which may be due to fundamental limitations of the trace-
driven paradigm.

This paper is a progress report of our efforts in developing
performance simulators. We are concerned with all four of
the above-stated issues. Our second-generation tool called
MW is described in Section 2. In Section 3 our efforts in val-
idating the MW-generated PowerPC 604 model against an

actual PowerPC 604 machine are documented. In Section 4
we present some of our recent experimental results on sim-
ulating extremely long traces and the potential inaccuracies
that can result when trace sampling is used. The MW-gener-
ated PowerPC 620 model is used in this experimentation. We
present our informal conclusions in Section 5.

2. Microarchitecture workbench

We began developing simulation tools for superscalar
microarchitectures in 1992. Our goal was to develop tools
that can be effectively used by both industry designers as well
as university researchers and students. Two generations of
such tools have been developed and we have made significant
use of these tools in our research activities and classroom
instruction. Quite a few copies of our first-generation tool
have been distributed to a number of industrial companies.

2.1. First generation tool: VMW

Our first-generation tool called VMW (Visualization-
based Microarchitecture Workbench) has been fully func-
tional since 1994 [DS93, DS95]. The primary design objec-
tives of VMW were retargetability and visualization support.
VMW defined a set of machine description files, which once
specified can be “compiled” into a working simulator.
Design changes can be made easily by editing the files and a
new simulator can be quickly generated by recompiling the
files. Extensive visualization capabilities were also incorpo-
rated to allow the user to “see” the dynamic behaviors of the
machine while simulation is taking place. These two design
objectives led to capabilities that we called

simulator com-
pilation

 and

trace animation

.
Simulators for a number of real machines were imple-

mented using VMW. These machines include the Alpha
AXP 21064 [Dig92] and 21164 [BK95], the RS/6000
[Gro90], the PowerPC 601 [IBM93] and 620 [DNS95], and
a multithreaded version of the PowerPC 620 developed at
CMU. Once the architecture description files are in place, for
each new microarchitecture, approximately 1-3 months are
needed to write and debug the machine description files.
Since the publication of the paper [DS95], close to 50 copies
of the VMW source code have been distributed.

In early 1995 we began work on a second-generation tool
by improving on VMW. The three major changes were: 1)
removal of all the visualization capabilities; 2) redefining the
C++ implementation framework; and 3) performing specific
software optimizations. We discovered that while visualiza-
tion was very helpful and interesting to a novice user, it
quickly became a real overhead in terms of simulation time.
We also re-architected the C++ implementation framework
based on lessons learned in implementing several machine
models. We also spent some effort in optimizing the code
itself. We ended up calling the second-generation tool MW

Preprint of paper to appear in ICCD, October, 1996

(Microarchitecture Workbench) [HD95].

2.2. Second generation tool: MW

Similar to its predecessor, MW provides a framework that
minimizes the amount of work necessary to produce a sim-
ulator and the amount of changes necessary to evaluate an
alternative microarchitecture. This is done by placing most of
the processor specification in the machine description files,
which are read by the simulator at run time. The behavior
specification of the processor is written in C++ and compiled
to become part of the simulator. In this setup, minor changes
in processor design (such as increasing the number of integer
pipelines) can be evaluated by changing only the machine
description files, resulting in a short cycle time for assessing
the impact of a new microarchitectural feature.

MW is based on the Visualization-based Microarchitec-
ture Workbench (VMW), which provides a graphical user
interface. In MW, the graphical interface has been stripped
and the core modules have been optimized for improved sim-
ulation speed. Currently, simulators for the following
machines have been implemented using MW: Alpha AXP
21064 and 21164, PowerPC 604 [IBM94] and PowerPC 620.
We have also started implementing an MW model of the Pen-
tium. MW is now the primary simulation vehicle used in our
research. On a complex microarchitecture design, such as the
PowerPC 620, the MW model can run 10-20 times faster than
the corresponding VMW model.

Figure 1 illustrates the major components of MW with an
exploded view of the four primary modules inside MW. To
build a simulator for a processor, the developer writes the five
files represented by the rhombuses. The machine behavior
file is written in C++; it is compiled and linked with other
modules in MW to become part of the simulator.

When the simulator is executed, it goes through an initial-
ization phase before starting the simulation. During this ini-

FIGURE 1.

Major components of MW.

RESOURCETRACE

PROCESSOR

MAIN

Basic Blk.

Instruction

Data

Instruction
Semantics

Instruction
Syntax

Instruction
Timing

Machine
Organization

Instruction
Objects

Machine files

Trace files

Flow of data
Flow of control

Machine
Behavior

Modules within MW

Compiled to:

written by developer

supplied by user

Trace

File

Trace

MW

tialization phase, the other four machine files (in template
form) are read by the

Trace

 and the

Resource

 modules.
The machine organization file contains size and bandwidth
information on the register files and instruction pipelines.
Based on this information, the

Resource

 module is able to
determine all of the machine resources that are available to
the executing instructions. The instruction timing file con-
tains a cycle by cycle account of all resources used, read and
written to by each instruction starting from the time that it is
issued. This information is used during simulation to detect
structural and data hazards. The instruction semantics file
describes how operands and immediate values are to be
extracted from each instruction. The instruction syntax file
specifies the opcode fields to be used in instruction decoding.

When the simulation begins, the

main

 module invokes the

Processor

 module to simulate each cycle. The

Proces-
sor

 module then asks the

Trace

 module for the next
instruction in the instruction trace. Using the three trace files,
the

Trace

 module is able to determine the next instruction
in the instruction trace and its data address if the instruction
is a load/store. The

Trace

 module decodes the instruction
using information from the instruction syntax file. It extracts
the operands and immediate values using the instruction
semantics file. It looks up the timing information for the
instruction in the instruction timing file. When all this infor-
mation about the instruction is located, the instruction is
repackaged into an instruct ion object (

class
InstrInfo

) and passed back to the

Processor

 module.
The instruction object provides a simple interface through

which the

Processor

 module can access information that
are necessary for simulation. For example, the instruction
object can provide the instruction address for simulation of
instruction cache. It can provide timing information, which
contains the resource requirements for the instruction. The
complete interface for

InstrInfo

 is described in [HD95].
The

Processor

 module uses the timing information to
query the

Resource

 module for the availability of the
required resources. The resources may be unavailable due to
data hazard or structural hazard. In that case, the

Proces-
sor

 module will try to issue again in the next cycle. If the
resources are available, the

Processor

 module issues the
instruction and informs the

Resource

 module to mark
those resources as used. This entire process is repeated until
the end of the instruction trace.

2.3. Trace generation in MW

Currently MW has trace generation support for two archi-
tectures, the DEC Alpha and the IBM/Motorola PowerPC.
For the Alpha we actually use the ATOM tool [SE94] from
DEC. For the PowerPC we have developed our own trace
generation tools. There is plan to develop a retargetable trace
generation tool for MW. Typically the trace generation tool
embeds instrumentation code into a program. When the
instrumented program is executed the desired traces are pro-
duced.

There are four different ways to configure the interface
between trace generation and simulation. One way is to gen-
erate the traces ahead of time and store them on disk. During
simulation, disk files are accessed to obtain the traces. The
second way is to generate the traces simultaneously with sim-
ulation and use the Unix file pipe mechanism to feed the
traces to the simulator without storing the traces on disk. The
third way is to implement trace generation and simulation as
concurrent processes operating in the shared memory mode.

Traces are passed from one to the other via the shared mem-
ory. The fourth way to configure the interface between trace
generation and simulation involves the use of the Unix socket
mechanism across a local area network. We first look at the
relative speeds of trace generation and simulation in terms of
CPU time, before we discuss the four interface configura-
tions in more detail. Table 1 lists the time that it takes to gen-
erate traces and perform simulation relative to the time it
takes to run the original uninstrumented program. These
measurements are taken on a DEC 3000/400 (which uses a
133 MHz AXP 21064) running a 21064 simulator (a rela-
tively simple MW-generated model). For more complicated
processors, the simulation time can be even higher, but the
trace generation times should stay the same.

Table 2 lists the four possible interface configurations
between trace generation and simulation. In the disk config-
uration, the trace is generated only once and stored on disk.
The problem with this method is the large amount of disk
space required to store the traces. In the file pipe mode, two
FIFO files (.itr and .dtr) are created on the local disk. The
instrumented executable is run at the same time as the sim-
ulator. While one writes to the FIFO files, the other reads
from them. This configuration requires no disk space, but the
trace has to be generated for each simulation, increasing the
total simulation time by up to 10%. In the shared memory
configuration, the simulator sets up a region in memory as
shared memory. The trace is generated for each simulation
and is written to the shared memory. Because writing to
shared memory is much more efficient than writing to the file
system, generating the trace concurrently with the simulation
adds less than 1% to the total simulation time.

The shared memory configuration seems to be the ideal
way to do simulation. Because the trace is generated as the
simulation occurs, there is no need to store the trace. Also the
amount of CPU time used by the trace generation process
represents an insignificant portion of the total simulation

Table 1 Relative run times for trace generation and
simulation.

Run time relative to
original executable

Trace
generation:

File mode 500X - 1,000X

Shared memory mode 50X

Socket 50X - 100X

Simulation: 10,000X

Table 2 Four configurations for trace generation and
simulation interface.

Configuration
of trace

generations
for

n

simulations

Disk
space

required?

Simulation
 time is

increased
by

Disk 1 yes 0%

File pipe

n

no 10%

Shared memory

n

no < 1%

Socket

n

no 0%

time. However this configuration imposes the constraint that
the host machine (the one performing the simulation) must be
of the same ISA as the target machine (the one that is being
simulated). We have implemented and experimented with
the first three configurations in the past.

Recently, we have implemented the fourth configuration
that uses the Unix socket mechanism across a local area net-
work. In this configuration trace generation and simulation
occur simultaneously but on different machines on the net-
work. The machine generating the trace (with the same ISA
as the target machine) feeds the trace on the fly to the machine
doing the simulation (can be of any ISA). Because the trace
is generated on a machine other than the one that the simu-
lation is running on, the trace generation does not add any
additional time to the simulation. Currently we use a large
number of Intel Pentium Pro (150MHz) platforms for the
tedious simulation runs. Traces are generated by Alpha and
PowerPC machines, each of which can simultaneously gen-
erate traces for multiple programs and feed the traces, via the
socket code, to multiple Pentium Pro systems. By harnessing
dozens of Pentium Pro systems on the network, we can carry
out many long simulation runs simultaneously. Currently,
this is our preferred configuration for simulation.

3. Machine model validation

Much like functional verification in the past, today’s per-
formance model validation is predominantly an ad-hoc pro-
cess, with no rigorous methodology. Without rigorous
validation, strong confidence cannot be placed on the results
produced by these performance models. Robert Colwell says
“watch out for artifacts and inaccurate results” or “don’t
always believe everything it says” when speaking of perfor-
mance models [CL95]. In our machine model validation
experiment, we adapt the standard industry functional veri-
fication methodology to performance model validation.

Typical functional verification involves billions of cycles
of random test patterns, and man years of micro-test gener-
ation and coverage testing. All of these patterns have an
expected functional result and are executed on the proces-
sor’s hardware model throughout development. We propose
leveraging this functional work to validate the processor’s
performance model. If the performance model were linked
with the functional model, the engineer and random test gen-
erator would create the tests and the hardware model would
provide an expected execution cycle time. This process ver-
ifies a high level (not necessarily cycle for cycle equivalent)
performance model, that tracks with the design process.

The following subsections will demonstrate the success of
such a validation methodology. Since we do not have access
to functional models or the facilities to execute them, our
functional model will be replaced with the actual hardware.
If done correctly, embedded hardware counters provide
equivalent results, with a more complicated interface but
blazing execution times. The following discussion uses the
PowerPC 604 as its microarchitecture base. The MW simu-
lator tool is used to implement the PowerPC 604 microarchi-
tecture model and a Power Series 850 (100 MHz) AIX
system is used as the hardware reference.

3.1. PowerPC 604 simulation model

Our MW model is based on published reports on the Pow-
erPC 604 [DS94, SDC94, IBM94] and accurately models all
aspects of the microarchitecture, including branch predic-
tion, fetching, dispatching, register renaming, out-of-order

issue and execution, result forwarding, the non-blocking
cache hierarchy, alias detection, instruction refetching, and
in-order completion. The 604 can fetch, dispatch, and com-
plete up to four instructions per cycle, and can issue and exe-
cute up to six instructions per cycle.

3.2. PowerPC 604 hardware counters

The PowerPC 604 has a set of hardware counters called the
performance monitor. [IBM94: section 9] provides a detailed
description of the performance monitor features. There are
two 32 bit counters (PMC1 and PMC2) and a 32 bit monitor
mode control register (MMCR0). The MMCR0 register
determines the signals to be monitored by each count register,
and the conditions under which to increment the counters.

The performance monitor can count basic information
such as cache miss, TLB miss, instruction dispatching,
instruction finish, instruction completion, and load/store
miss. A subset of the PMC1 and PMC2 counter options are
outlined in Table 3.

To configure the counters for a desired event the bit encod-
ing of the specified event is inserted into the corresponding
field of the MMCR0 register. In addition to counter control
the MMCR0 register handles all threshold events, PMC2
count trigger, and contains the configuration for both the
PMC1 and the PMC2 registers. Table 4 contains a detailed
list of the MMCR0 configuration options.

The PowerPC 604 counters can be enabled to count super-
visor mode, user mode, only processes that are marked by the
MSR[PM] bit, and only processes that are not marked by the
MSR[PM] bit. Combinations of these modes are possible.
For example, one can observe all supervisor and user pro-
cesses that are marked. The MSR[PM] bit is a special bit in
the machine state register (MSR) that when set marks a pro-
cess. Each processor has its own MSR value. Threshold
events are events with different values. Table 3 has two
threshold events, the load and store miss service times. The
MMCR0 threshold field is set to a value and the PMC1
counter field configured to one of these two events. This cre-
ates a condition on the event such that the threshold condition

Table 3 PowerPC 604 hardware counter options

Counter Feature Description

PMC1 & PMC2 Processor Cycles

PMC1 & PMC2 Instructions Completed

PMC1 & PMC2 Instructions Dispatched

PMC1 Instruction cache miss

PMC2 Data cache miss

PMC1 Branch miss-prediction

PMC1 Length of load data cache miss service
(Cycles) Threshold event

PMC1 Length of store data cache miss service
(Cycles) Threshold event

PMC1 Number of integer instructions completed

PMC1 Number of floating point instructions com-
pleted

PMC2 Number of branches completed

PMC2 Number of loads completed

must be met before the counter is incremented. For example,
setting the threshold to 20 and the PMC1 counter configura-
tion to 9, the PMC1 counter will only count load misses that
take 20 cycles or more to service. This feature allows the user
to create a histogram of load miss service times. The final fea-

ture of the MMCR0 register is the trigger of the PMC2
counter when the PMC1 counter goes negative. This allows
the user to count events late in execution after another event
has occurred. For example, the cache miss rate can be
observed at a certain point of execution by counting the
cycles until then and triggering the PMC2 counter at that
moment.

3.2.1. Hardware counter interface

The PowerPC 604 hardware counters are implemented as
special registers accessible only in supervisory mode. The
“mtspr” instruction is used to modify the PMC1, PMC2, and
MMCR0 registers, while the “mfspr” instruction is used to
read the current state of these registers. Since these registers
are accessible only in supervisory mode, a set of AIX dynam-
ically-loadable pseudo devices are built to interface user
code to the supervisor “mtspr” and “mfspr” instructions.

3.2.2. Benchmark instrumentation

A small library is created that provides “C” functions for
reading and writing all the special registers used in the Pow-
erPC 604 performance monitor. This library also includes
data structures that define the counter options and counting
configurations. To use the hardware counters this library is
included in the compile options and a simple script instru-
ments the “main function” of the benchmark source code.
The instrumented code reads command line options to con-
figure the counters and counting conditions. The source code
is then encapsulated by a hardware counter initialization
block and a termination block. The initialization block con-
sists of simple library calls that preset and start the counters.
The termination block stops the counting, reads the current
state of the counters and writes the results to a specified file.

The instrumentation process can be easily adapted to
encapsulate any desired portion of the source code. Each start
and stop of the hardware counters introduces an overhead of
621 instructions using a Power Series 850 (100 MHz) Pow-
erPC 604 system running AIX 4.1.3.

Table 4 MMCR0 bit settings

Bits Description

0 Disable counting

1 Disable counting while in supervisor mode

2 Disable counting while in user mode

3 Disable counting while the MSR[PM] is set

4 Disable counting while the MSR[PM} is clear

10 - 15 Threshold value of 0 to 63

18 Trigger counting of PMC2 after PMC1 has become
negative

19 - 25 PMC1 configuration

26 - 31 PMC2 configuration

3.3. Validation tests

The validation methodology for the MW PowerPC 604
model has two sources for test code sequences. The first is a
random test program generator, designed to produce a huge
number of test instructions without human intervention. The
second is a small set of hand generated test sequences,
designed to target specific architectural features of the Pow-
erPC 604 implementation.

3.3.1. Random test program generator

A random test program generator (RTPG) is built into the
MW simulator to provide a validation test program source for
MW models. The RTPG mode of MW requires the Instruc-
tion Syntax and Instruction Semantics files, described in sec-
tion 2.2. These files completely specify the ISA of the
simulation model. The RTPG mode produces a random set of
instructions and outputs executable assembly code. The
assembly code output is turned into an MW trace using any
one of a number of possible tracing programs. The trace is
then run as input for the simulation model, and results are
compared with hardware execution.

Hardware execution is achieved using the AIX pseudo
devices described in Section 3.2.1. Instead of instrumenting
the code as described in Section 3.2.2., the RTPG mode
inserts the randomly generated code directly into the device
driver code. The device driver is compiled and installed into
the OS for each random pattern. Although execution time is
expensive, the hardware results have no overhead and pro-
duce exact cycle counts for comparison with the simulation
model. The core of the device driver created by RTPG is

illustrated in Figure 2. The random code sequence is brack-
eted by the start and stop instructions for the PowerPC 604
hardware counters. The “mtspr MMCR0, r4” instruction is
functionally implemented in the PowerPC 604 simulator.
The simulator records all performance monitor options (from
Table 3 and [IBM94]: section 9) between the start and stop
instructions. Once simulation is completed the recorded data
is written to a file for the comparison. Modeling the “mtspr
MMCR0, r4” functionally removes any discrepancy in fetch-
ing before and after the “mtspr” instructions.

On request RTPG can exclude any instructions in the ISA.
Branches are not allowed to leave the program space and loop
for a random amount of time less than a pre-programed max-
imum. Load and store instructions load random data from an
allocated data space following the device driver code. Future
RTPG work will involve biassing the random patterns to
exercise specific portions of the micro-architecture imple-
mentation.

FIGURE 2.

RTPG device driver core

Initialize registers

mtspr PMC1, r0 # Initialize counter 1
sync # Flush data memory system
isync # Flush machine pipelines
mtspr MMCR0, r4 # Start counters

Random code sequence

mtspr MMCR0, r5 # Stop counters
mfspr r3, PMC1 # Retrieve count value
blr # Return to the C portion of the device

Data area for loads and stores follows

3.3.2. Handwritten micro test programs

In any comprehensive functional validation methodology,
engineers are required to create micro tests that target specific
microarchitecture features. These tests are usually designed
to exercise boundary conditions and obscure functional
states that a random test generator may not exercise. These
tests are also used to improve “test coverage” by stimulating
certain signals in the functional implementation. As with
functional models, performance models have boundary con-
ditions and obscure state based behavior. Proper validation of
a performance model must include these micro tests.

The validation of the PowerPC 604 simulator included
several micro test sequences. These test sequences are mostly
branch and load/store tests, designed to exercise the branch
paradigm and memory hierarchy. These tests are inserted
into the performance monitor device drivers. Hardware
counter statistics (including: branch misprediction, load miss
latencies, Icache miss, and Dcache miss counts) are gathered
to pinpoint the behavior of the hardware.

3.4. Validation results

To verify the effectiveness of the validation process a small
set of benchmarks are executed on the hardware system as
well as simulated with the PowerPC 604 model. Obviously,
the smaller the delta between the two cycle counts the more
accurate the simulation model. This process has two sources
for error. The first involves the actual sequence of instruc-
tions executed. The instructions in the simulated trace may
not be identical to the sequence of actual instructions exe-
cuted on the hardware. The second is due to the inaccuracy
involving the embedded counters. The hardware counters
may count other instructions executed that are not part of the
benchmark code. The closer correlation between the

instruc-
tion counts

 of the simulated trace and the executed trace will
ensure a more reliable and correlated

cycle counts

 on both the
simulator and the hardware.

3.4.1. Hardware to trace correlation

Dynamic instruction count is a microarchitecture indepen-
dent metric that is common to both the hardware execution
and trace simulation. It is assumed, if the instruction count is
the same between a hardware execution and a trace simula-
tion, that the trace has accurately captured the runtime effects
of the benchmark. It also follows that the hardware counters
counted only the execution of the benchmark code. The
benchmarks used to verify this validation process are listed
in Table 5. The table also includes the instruction counts for
both the hardware execution and the trace driven simulation.
These numbers demonstrate that there is strong correlation
between the two instruction counts. There are three sources
of error that can account for these small discrepancies.

Tool overhead:

Both the hardware counters and the trace gathering tool
have a fixed overhead of 621 and 557 instructions respec-
tively. This overhead offsets and effectively adds 64 instruc-
tions to the hardware instruction counts.

Trace gathering:

The trace gathering introduces an unknown element to the
instruction and cycle counts. The tracing tool used in this
study is designed to trace library calls, however it is unclear
how extensive the trace reaches into each library call. The
hardware counters count all user processes up to the point

they switch to supervisory mode. We expect some additional
instructions in the hardware count due to this difference.

Hardware system interrupts:

The PowerPC 604 performance monitor allows the user to
mark processes and count only those processes. However,
the AIX operating system masks the machine state register
bit which marks the process. We are forced to run the bench-
mark executions counting all user process. Therefore, the
instruction and cycle counts may include interrupts for other
user processes. All hardware executions are performed in
single user mode to reduce this effect. Unfortunately, the
counts still varied slightly. This introduces an unknown per-
turbation on the instruction counts in Table 5.

Supporting the above stated explanations for the instruc-
tion count discrepancies, the hardware counter instruction
counts are consistently greater than the simulation traces.
With the exception of the eqntott benchmark there is strong
correlation between the two counts. Therefore, we expect
very reliable cycle count results for cjpeg, grep, gperf, mpeg,
and quick. The 5.1% difference in instruction counts for the
eqntott benchmark is unexplained at this time, but must fall
under one or more of the error conditions mentioned above.

3.4.2. PowerPC 604 simulator results

Table 6 summarizes the cycle count results for the bench-
marks. All simulation cycle counts for the benchmarks with
strong correlation of instruction counts are within 5.32% of
the actual hardware cycle counts. Again eqntott shows a sig-
nificant error. At this time it is not well understood why the
eqntott cycle counts are 27% off. The 5% instruction count
error is not significant enough to account for this error.

The results in Table 6 show promise for this new method-
ology, but are not conclusive. At the time of publication this
new validation methodology, borrowing from functional
verification techniques, is in its infancy. The RTPG tool is
still finding errors in the simulation model, and is unable to

Table 5 Benchmark instruction counts

Benchmarks Length (Instructions) %
Hardware Trace

cjpeg

128x128 BW image
2,771,141 2,771,012 -0.02

eqntott

 (SPEC92) Modified
reference input

18,866,003 17,903,424 -5.1

grep

grep -c “st*mo” 1/2
SPEC92 compress input

2,315,408 2,315,201 -0.01

gperf

gperf -a -k 1-13 -D -o
Scrabble 200 word dict.

7,819,185 7,817,130 -0.03

mpeg

Berkeley MPEG decoder
4 frames w/ dithering

9,039,253 9,039,010 0.0

quick

Sort of 5000 rand. Elem.
739,022 738,895 -0.02

log large numbers of successful, i.e. perfectly matching,
instruction executions between model versions. Further
development of this methodology is ongoing, and its final
results will include a larger diverse set of benchmarks and
micro tests, along with significant RTPG cycles. These
results are expected and will be presented at the conference.

4. Trace sampling inaccuracy

Various trace sampling techniques (e.g. [ITB96]) have
been proposed to reduce both the time and space require-
ments of trace-driven performance modeling. These tech-
niques attempt to capture the behavior of the original
program trace in a smaller, shorter trace that takes less space
and time to store and process, without sacrificing too much
simulation accuracy. To evaluate the feasibility of trace sam-
pling, we collected detailed intermediate simulation results
from our PowerPC 620 model [DNS95] for some of our
longer traces and qualitatively analyzed them for amenability
to two commonly-used approaches to trace sampling: trun-
cation and time-domain sampling.

4.1. PowerPC 620 simulation model

Our model is based on published reports on the PowerPC
620 [DNS95, LTT95], and accurately models all aspects of
the microarchitecture, including branch prediction, fetching,
dispatching, register renaming, out-of-order issue and exe-
cution, result forwarding, the non-blocking cache hierarchy,
alias detection, instruction refetching, and in-order comple-
tion. The 620 can fetch, dispatch, and complete up to four
instructions per cycle, and can issue and execute up to six
instructions per cycle.

4.2.

Trace sampling results

To evaluate trace sampling, we collected the branch
misprediction rate and the sustained instructions-per-cycle

Table 6 Benchmark cycle counts

Benchmark Cycle Count Discrepancy
in %

Hardware Simulation

cjpeg 2,686,552 2,758,667 2.68

eqntott 17,660,335 12,837,171 -27.31

grep 2,774,036 2,768,619 -0.2

gperf 6,452,720 6,796,622 5.32

mpeg 8,182,928 7,797,112 -4.71

quick 775,600 738,895 -4.73

Table 7 Trace sampling benchmarks

Name Description Length
(# instr) IPC Branch

Mispred

cc1 SPEC92 gcc 1.35 146.1M 1.24 5.1%

compress SPEC92 1/2 of in 38.8M 1.16 8.8%

perl SPEC95 tiny 105.2M 1.02 4.3%

sc SPEC92 short 78.5M 1.26 1.9%

swm256 SPEC92 5 iter 43.7M 0.85 0.1%

xlisp SPEC92 6 queens 52.1M 1.16 5.1%

Total 464.5M

(IPC) metric for the six benchmarks summarized in Table 7
at intervals of two million cycles, and plotted both the cumu-
lative average and the average for just the last two million
cycles against time

The results are plotted in Figure 3 and Figure 4. For all

benchmarks, we see that one or both metrics vary signifi-
cantly throughout the execution of the program. This in itself
is discouraging for trace sampling, since none of the bench-

FIGURE 3.

Results for cc1, compress, and perl

0 10 20 30 40 50 60 70 80 90 100 110
Millions of Cycles

0.5

1.0

1.5

2.0

IP
C

0.0

2.0

4.0

6.0

8.0

10.0

B
r

M
is

pr
ed

 R
at

e
(%

)

cc1

Cumulative Avg
Avg. for last 2M

0 10 20 30
Millions of Cycles

0.80

0.90

1.00

1.10

1.20

1.30

1.40

IP
C

7.0

8.0

9.0

10.0

B
r

M
is

pr
ed

 R
at

e
(%

)

compress

Cumulative Avg
Avg. for last 2M

0 10 20 30 40 50 60 70 80 90 100
Millions of Cycles

0.90

0.95

1.00

1.05

1.10

IP
C

2.0

3.0

4.0

5.0

6.0

7.0

B
r

M
is

pr
ed

 R
at

e
(%

)

perl

Cumulative Avg
Avg. for last 2M

marks appear to reach a dominant steady state that could be
used to approximate the behavior of the whole trace.

Three of the benchmarks--cc1, compress, and swm256--
demonstrate periodic behavior in one or both metrics. For
cc1, this behavior corresponds with the number and size of
the procedures in the source input file used (gcc compiles one
procedure at a time). Clearly, truncating the trace before the
largest procedure (recog_6) could severely distort results,
while time-domain sampling would be subject to interfer-

FIGURE 4.

Results for sc, swm256, and xlisp

0 10 20 30 40 50 60
Millions of Cycles

1.10

1.20

1.30

1.40

IP
C

0.0

2.0

4.0

6.0

8.0

B
r

M
is

pr
ed

 R
at

e
(%

)

sc

Cumulative Avg
Avg. for last 2M

0 10 20 30 40 50
Millions of Cycles

0.60

0.70

0.80

0.90

1.00

1.10

IP
C

0.00

0.10

0.20

0.30

0.40

B
r

M
is

pr
ed

 R
at

e
(%

)

swm256

Cumulative Avg
Avg. for last 2M

0 10 20 30 40
Millions of Cycles

1.130

1.140

1.150

1.160

IP
C

4.80

4.90

5.00

5.10

B
r

M
is

pr
ed

 R
at

e
(%

)

xlisp

Cumulative Avg
Avg. for last 2M

ence due to the periodic nature of each metric.
The periodic nature of compress can be attributed to the

compression algorithm in use: it fills a table until it reaches
a certain size, then starts over with a new one (this happens
at around 16 million cycles). Again, both truncation and trace
sampling could severely distort results.

The third benchmark that display periodic behavior is
swm256. Here, the behavior corresponds to five iterations of
the main loop. Again, the same pitfalls apply to truncation
and trace sampling.

The results for perl clearly match two main phases of com-
putation: first, a large dictionary is loaded into an internal
structure, then this dictionary is searched for anagram
matches. Here, truncation would fail badly, while sampling,
if applied carefully to include both phases, could be quite
successful.

The remaining two benchmarks, sc and xlisp, are relatively
well behaved, and could be quite amenable to both truncation
and sampling. However, even sc shows significant variations
in both metrics towards the end of the program (these would
not be accounted for with truncation), while xlisp displays
some periodic branch-misprediction behavior that could
impact time-domain sampling.

In summary, these results demonstrate that arbitrary use of
either trace truncation or time-domain sampling can lead to
significant inaccuracies for both IPC and branch-mispredic-
tion metrics. Neither approach, unless carefully and system-
atically applied, is a reasonable substitute for simulating with
the full trace.

5. Conclusions

We started out developing trace-driven performance sim-
ulators out of necessity in order to carry out our superscalar
microarchitecture research. We soon discover that this task is
a research topic in its own right. We have learned a great deal
about microarchitecture performance simulation and believe
that there is a great deal more work to be done, including
more rigorous experimental research.

Chronologically we developed our PowerPC 620 model
first. It was a frustration not being able to rigorously validate
our 620 mdoel against a hardware model or an actual hard-
ware machine due to their unavailability. We then developed
our PowerPC 604 model for the purpose of validating it
against a PowerPC 604 machine, which was available. Given
the MW framework, the 604 model took one person about
two months to write. We have spent another two months of
debugging up to the time that this paper was submitted for
publication. The 604 validation results presented in Section
3 are only preliminary. We expect that the 604 model will be
further fine tuned and more benchmarks will be processed. In
any case, the results so far seem to indicate that trace-driven
performance simulators can model actual hardware perfor-
mance with reasonable accuracy. There is also the trade-off
between model development time and model accuracy.

Because machines are getting much faster that standard
benchmarks, e.g. SPEC, are also evolving to run for longer
times involving much longer traces. For simulations with an
overhead of four possibly five orders of magnitude, these
extremely long traces become problematic for average
researchers. In Section 4 we explore the possible inaccura-
cies that can result from trace sampling. Our sense is that
arbitrary samplings (quite frequently done in published
papers) are very questionable. How would one go about val-
idating the representativeness of a sampled trace without the

data from the full trace as a reference? Running unvalidated
sampled traces on unvalidated performance models gener-
ates results that can easily be considered as bogus.

Acknowledgments

The research efforts presented here have been supported by
NSF (CCR 9423272) and ONR (N000149610347). Andrew
Huang was supported by an IBM Graduate Fellowship. We
have also benefited from the generous donation of a large
number of Pentium Pro Systems from Intel to the computer
engineering group. We would like to give special thanks to
Marvin Denman at Motorola for sharing his knowledge of the
PowerPC 604 microarchitecture, and Prithvi Rao of CMU for
building the AIX pseudo device driver interface used in the
MW PowerPC 604 validation process. We thank the session
organizer, Pradip Bose of IBM, for inviting us to contribute
this paper.

References

[BK95] Peter Bannon and Jim Keller. Internal architecture of
Alpha 21164 microprocessor.

COMPCON 95

, 1995.
[CL95] Robert P. Colwell and Conrad Lai. Eternal Vigilance is

the Price of Performance. “Pre-Silicon Performance
Simulation” Workshop,

ISCA

 1995
[Dig92] Digital Equipment Corporation.

DECchip 21064-AA
Microprocessor Hardware Reference Manual

, 1992.
[DNS95] Trung A. Diep, Christopher Nelson, and John P. Shen.

Performance evaluation of the PowerPC 620 microar-
chitecture. In

Proceedings of the 22nd International
Symposium on Computer Architecture

, Santa Margh-
erita Ligure, Italy, June 1995.

[DS93] Trung A. Diep and John Paul Shen. EXPLORER: A
retargetable and visualization-based trace-driven sim-
ulator for superscalar processors. In

Proceedings of the
26th Annual ACM/IEEE International Symposium on
Microarchitecture

, 1993.
[DS94] Keith Diefendorff and Ed Silha. The PowerPC User In-

struction Set Architecture.

IEEE Micro

, pages 30-41,
1994

[DS95] Trung A. Diep and John Paul Shen. VMW: A visual-
ization-based microarchitecture workbench.

IEEE
Computer

, 28(12):57–64, 1995.
[Gro90] G.F. Grohoski. Machine organization of the IBM

RISC System/6000 processor.

IBM Journal of Re-
search and Development

, 34(1):37–58, January 1990.
[HD95] Andrew S. Huang and Trung A. Diep. MW develop-

er’s guide. August 1995.
[IBM93] IBM Microelectronics Division, Essex Junction, VT.

PowerPC 601 RISC Microprocessor User’s Manual

,
1993.

[IBM94] IBM Microelectronics Division.

PowerPC 604 RISC
Microprocessor User’s Manual, 1994.

[ITB96] Vijay S. Iyengar, Louise H. Trevillyan, and Pradip
Bose. Representative traces for processor models with
infinite cache. In Proceedings of the Second Interna-
tional Symposium on High-Performance Computer
Architecture, pages 62–72, San Jose, California, Feb-
ruary 3–7, 1996. IEEE Computer Society TCCA.

[LTT95] David Levitan, Thomas Thomas, and Paul Tu. The
PowerPC 620 microprocessor: A high performance su-
perscalar RISC processor. COMPCON 95, 1995.

[SDC94] S. Peter Song, Marvin Denman, and Joe Chang. The
PowerPC 604 RISC Microprocessor. IEEE Micro,
pages 8-17, 1994

[SE94] A. Srivastava and A. Eustace, “ATOM: A System for
Building Customized Program Analysis Tools”, Proc.
of PLDI, 1994.

